The m_{2} product on chains (and not cochains)
Goal: We know that there are products on (linearized) Legendrion contact cohomology, which are collectively called A_{∞} products or Massey products. Today well look at a single product structure, and pull it back to the level of chains (not cochains). This will be denoted by m_{z}.
Your Goal: Understand how the heights of Reed chords change before and after mi multiplication. What effect does the augmentation have?
Setup: Let A denote the Chekanov-Eliashberg DGA of a particular Legendrian knot Λ having rotation number $r(\Lambda)=0$. Fix an augmentation $\varepsilon:(f, \partial) \rightarrow\left(\mathbb{Z}_{2}\right.$, zero differential). (In particular $\varepsilon(t)=1$.) Let A denote the \mathbb{Z}_{2} vector space having basis given by the Redo chords of Λ. Define $A^{2}=\left(f \otimes \mathbb{I}_{2}\right) /(t=1)$, but we could start with computing A with \mathbb{Z}_{2} coeffs from the outset.
We have seen that, as an algebra, $A^{2}=\oplus_{m=0}^{\oplus} A^{\otimes m}$, and recall that $A^{80}=\mathbb{Z}_{2}$. Normally, to compute the linearized differential $\partial_{i n}^{\varepsilon}$ we would ignore all terms of word length ≥ 2. Today we wont do that anymore.
Notation: We use subscripts inside of parentheses to denote grading from word length.
Recall: The augmentation defines a map $\Phi^{\varepsilon}: A^{\varepsilon} \rightarrow A^{\varepsilon}$ given by $\Phi^{\varepsilon}(a)=a+\varepsilon(a)$ and a differential $\partial^{\varepsilon}=\Phi^{\varepsilon} \circ \partial \circ\left(\Phi^{\varepsilon}\right)^{-1}$.
Example: We've done the right-handed trefoil before Name the generators a_{1}, \ldots, a_{s} as in the figure. We computed $\left|a_{1}\right|=\left|a_{2}\right|=1$. Let
ε be the augmentation $\varepsilon\left(a_{3}\right)=1$ and $\varepsilon=0$ otherwise.
After a computation, $\quad \partial^{\varepsilon}\left(a_{1}\right)=\underbrace{a_{3}+a_{5}}_{\partial_{(1)}^{2}\left(a_{1}\right)}+\underbrace{a_{5} a_{4}}_{\partial_{(2)}^{\varepsilon}\left(a_{1}\right)}+\underbrace{a_{5} a_{4} a_{3}}_{\partial_{(3)}^{2}\left(a_{1}\right)}$ un the image as follows:
Break up the image as follows: $\quad \partial_{(1)}^{2}\left(a_{1}\right)+\partial_{(2)}^{2}\left(a_{1}\right)+\partial_{(33)}^{a_{1}}\left(a_{1}\right)$ and

$$
\partial^{2}\left(a_{2}\right)=\underbrace{a_{3}+a_{5}}_{\partial_{(2)}^{\varepsilon}\left(a_{2}\right)}+\underbrace{a_{4} a_{5}}_{\partial_{(2)}^{\varepsilon}\left(a_{2}\right)}+a_{3} \underbrace{a_{4}}_{(3)}\left(a_{2} a_{5}\right)
$$

We see that the differential splits into a sum: $\partial^{\varepsilon}=\sum_{n} \partial_{(n)}^{\varepsilon}$ In particular, $\partial_{(8)}^{\varepsilon}\left(a_{1}\right)=a_{5} a_{4}$ and $\partial_{k 2}^{\varepsilon}\left(a_{2}\right)=a_{4} a_{5}$ and $\partial_{(0)}^{\varepsilon}=0$ an all generators of grading zero (because $\partial^{\varepsilon}=0$ an such). We note that $\partial_{(k)}^{\varepsilon}: A^{\varepsilon} \rightarrow A^{\otimes 2}$. Furthermore, the degree of $\partial_{i e}^{\varepsilon}$ with respect to the Maslou grading is -1 .
Note: Every $\partial_{(k)}^{2}(k \geq 1)$ has degree -1 and maps $A^{2} \rightarrow A^{\otimes k}$, but each restricts to a vector space map $\partial_{(x)}: A \rightarrow A^{\otimes k}$. Each could be written as a matrix.
Definition: Let $m_{k e 1}^{e}=m_{2}:\left(A^{\otimes r}\right)^{*} \rightarrow A^{*}$ denote the adjoint of the linear transformation $\partial_{(2)}^{\varepsilon}$. We use the fad that A is finite-dimensional to identify $A^{*} \cong A$ using the same names for a basis for each. As a matrix m_{2} is the transpose of $\partial_{(2)}^{\varepsilon}$.
Example: For the right-handed trefoil above, $m_{2}\left(a_{5} \otimes a_{4}\right)=a_{1}$ and $m_{2}\left(a_{4} \otimes a_{5}\right)=a_{2}$.
Note: How does m_{2} relate to other product structwes? There is a k-ary product $m(x):\left(A^{\otimes k}\right)^{*} \rightarrow A^{*}$ given by taking the adjoint of $\partial^{\varepsilon}(k): A \rightarrow A^{\otimes k}$. Notice that most $m_{(x)}$ will be the zero product. All mas) have degree 1 with respect to Maslav grading. Collectively, the $m(k)$ satisfy the A_{∞} relations for each $l \geq 1, \quad 0=\sum_{i+j+k=1} m_{i+1+k} 0\left(1^{\otimes i} \otimes m_{j} \otimes 1^{\otimes i)}\right)$ For instance, when $l=2, \delta_{0} m_{2}(a \otimes b)=m_{2}\left(\delta_{a} \otimes b\right)+m_{2}(a \otimes \delta b)$ and recall that we use \mathbb{Z}_{2} coefficients.
Exercise: Apply the adjoint to the A_{∞} relations to get $0=\sum_{i+j+k=l}\left(1^{\otimes i} \otimes \partial_{(j)}^{\varepsilon} \otimes 1^{\otimes k}\right) \circ \partial_{(i+1+k)}^{\varepsilon}$ Check that this holds in the case $l=1,2,3$
for the $\partial^{2}\left(w\right.$ defined for the right-handed trefoil. (Using \mathbb{Z}_{2} coefficients!)
Note: The max) products induce an As product structure on linearized Legendrian contact cohomdogy which is denoted $\mu_{(c)}$. Here we investigate mic) on chains.

