
2023 REU Exercises

1 June 5 Exercises

1. Consider the parametrization (x(t), z(t)) ∈ R2
x ,z given by (x(t), z(t)) = (−t2, t3), −∞< t <∞.

(a) Find a function y(t) such that (x(t), y(t), z(t)) ∈ R3
x ,y,z is a Legendrian parametrization. That is,

your parametrization should satisfy z′(t)− y(t) x ′(t) = 0. (But it won’t be a knot.)
(b) Sketch the front and Lagrangian projections of your Legendrian parametrization.

2. Find a Legendrian isotopy, using Legendrian Reidemeister moves, between the following front projections
of the figure eight knot:

3. For each Legendrian knot Λ whose front projection is given on this page (including below), produce
the Lagrangian projection of a knot which is Legendrian isotopic to Λ. How is this a different task from
producing the Lagrangian projection of Λ?
Hint: For the follow-up question, it might help to revisit your sketches in Exercise 1.

4. Show that the Thurston-Bennequin invariant and rotation numbers, as defined using the front projection,
are invariants of Legendrian knots.

5. Produce formulas for tb(Λ) and r(Λ) which can be computed from the Lagrangian projection Π(Λ).
6. Prove that the Legendrian knots pictured below are isotopic as smooth knots, and have the same

Thurston-Bennequin and rotation numbers. We will refer to these Legendrians as the Chekanov pair.

7. Given a Legendrian knot Λ, let S±(Λ) denote the positive (respectively, negative) stabilization of Λ.
Compute tb(S±(Λ)) and r(S±(Λ)) in terms of tb(Λ) and r(Λ).
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2023 REU Exercises

2 June 6 Exercises

1. Prove the product rule for total differentials: d( f g) = g d f + f d g, for any smooth functions f , g : R3→ R.
2. Verify that exterior differentiation satisfies the Leibniz rule:

d(λ∧η) = dλ∧η+ (−1)deg(λ)λ∧ dη,

for any k-form λ and any ℓ-form η. (You should only have to check a few cases.)
3. In class you were given a formula for computing the exterior derivative using a commutative diagram. (For

a refresher, look at page 92 of A Geometric Approach to Differential Forms.) Use the commutative diagram
and your knowledge of vector calculus to explain why d ◦ d : Ω0(U)→ Ω2(U) and d ◦ d : Ω1(U)→ Ω3(U)
both vanish.

4. The isomorphism Φ2 (from the commutative diagram from class) shows how the curl can be interpreted
as a derivative operation for vector fields on U ⊆ R3. Imagine that you want to compute an antiderivative
for this operation, which we will call an anticurl. By definition, the anticurl of a vector field B⃗ is a vector
field whose curl is B⃗. Complete the following sentence. Any two anticurls of a vector field B⃗ can differ by
at most .

5. Complete problem 7.23 on page 94 of A Geometric Approach to Differential Forms. The problem is
reproduced here.
Let C be any curve in R3 from (0,0, 0) to (1, 1,1). Let F⃗ be the vector field 〈yz, xz, x y〉. Show that

∫

C F⃗ · d⃗s
does not depend on C .
Note: The problem of finding an anti-exterior-derivative is closely related to the notion of a conservative
force field. The existence of an anti-exterior-derivative is highly dependent on the shape of the domain
U , which is measured by De Rham cohomology.

6. Fill in all the boxes in the following diagram using the diagram from class and your knowledge of vector
calculus. The symbol × means either the Cartesian product of sets or the Cartesian product of functions,
depending on the context.

Ω1(U)×Ω1(U) Ω□(U)

X(U)×X(U) X(U)

∧

□×□ □

□

Hint: Start with the bottom row of the diagram. There’s only one meaningful way to combine two vector
fields and get another vector field in three dimensions.

7. Use the commutative diagram from the previous exercise to explain why the wedge product of any
differential 1-form with itself gives zero: ξ∧ ξ= 0 for any ξ ∈ Ω1(U).

8. Let α= dz − y d x .
(a) Check that the differential equation α(γ̇(t)) = 0 is equivalent to z′(t)− y(t) x ′(t) = 0.
(b) Compute α∧ dα.

9. (Challenge) Let S ⊂ R3 be the surface parametrized by
F(u, v) = (sin u cos v, sinu sin v, cos u), 0≤ u≤ π, 0≤ v ≤ 2π.

Show that
∫

S
ν= 4π,

where
ν= x d y ∧ dz + y dz ∧ d x + z d x ∧ d y.

Can you identify the surface S?
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2023 REU Exercises

10. Let B be the ball of radius 1 centered at the origin in R3, and compute
∫

B
dν,

where ν is the 2-form identified in the previous exercise.
Hint: You shouldn’t need to evaluate a triple integral if you remember the volume of a ball.
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2023 REU Exercises

3 June 7 Exercises

1. Consider the function f : R2 → R defined by f (x , y) := −y, and let f |S1 be its restriction to the circle
S1 = {(x , y) | x2 + y2 = 1}. Compute the Morse DGA associated to f |S1 .
Note: An important part of this problem is to determine what it means to compute a DGA — i.e., how
much information does your answer need to include? Also, a sketch of grad( f |S1) should suffice, in leiu of an
explicit calculation.

2. Consider the curve C ⊂ R2 sketched here:

Compute the Morse DGA associated to f |C , where we once again have f (x , y) = −y.
3. Consider the function ft : R→ R defined by

ft(x) = x3 + t x ,

where t ̸= 0 is an arbitrary real number. Compute the Morse DGA associated to ft . How does the case
t < 0 compare to the case t > 0? Do you see any connection to exercises 1 and 2?
Hint: Sketching grad( ft) (a vector field on R) should help with the last question.

4. Let Λ1,Λ2 be the Chekanov pair, whose front projections are given in the June 5 exercises. With
basepoint at the bottommost point of each front projection, compute the grading of each generator of
the Chekanov-Eliashberg DGA for Λ1,Λ2.

5. Prove that the Chekanov-Eliashberg DGA is not invariant under Legendrian isotopy.
Note: You can do this before knowing how to compute the differential!

6. We will eventually show that the Legendrian contact homology of a stabilized Legendrian knot is always
trivial. Using Ng’s resolution, show that there is a certain type of "gradient flow line" that we can always
find when computing the Chekanov-Eliashberg DGA of a stabilized Legendrian knot.
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4 June 8 Exercises
1. Show that any abelian group G can be made into a Z-module as follows: first, write the group operation

of G as +. Then, for any n ∈ Z and g ∈ G, define

ng =







g + g + · · ·+ g (n times), n> 0
0G , n= 0

−g − g − · · · − g (−n times), n< 0
,

where 0G is the additive identity of G. Check the axioms for this construction to be a Z-module.
2. Let A be an associative algebra over a commutative, unital ring R. Define the center CA of A as follows:

CA := {c ∈ A | a · c = c · a, for all a ∈ A}.

Verify that CA is an algebra over R.
3. Let X be (the boundary of) a cube in R3. For concreteness, you can take X to be the boundary of
[0, 1]×[0, 1]×[0, 1], but this isn’t necessary. Next, let C0 be the Z-module freely generated by the vertices
v1, v2, . . . , v8 of X . That is, C0 consists of formal linear combinations of v1, v2, . . . , v8, with coefficients
coming from Z. Similarly, let C1 and C2 be the free Z-modules freely generated by the edges and faces of
X , respectively.
(a) For k = 1 and k = 2, define a map ∂k : Ck → Ck−1 which corresponds to taking a boundary. For

instance, the boundary of a face should be a linear combination of four edges. To define ∂k, you
will need to choose an orientation for each edge and face. (It makes sense to orient each face
counterclockwise when viewed from outside the cube.) By “define a map," we just mean that you
should specify what it does to each generator of Ck.

(b) Produce a matrix representative for each of ∂1 and ∂2. Your matrix for ∂2 should be 12×6, and your
matrix for ∂1 should be 8× 12. Use these matrices to verify that ∂1 ◦ ∂2 = 0.
Warning: Your matrix representatives will depend on your labeling of the cube; so there are many
correct answers.

(c) The previous part shows that the image of ∂2 is a subset of the kernel of ∂1. (Make sure you believe
this.) Show that these two Z-submodules of C1 are in fact equal.
Hint: Identify bases for image(∂2) and ker(∂1).

(d) With what we’ve done so far, we could define C• to be the Z-module freely generated by the vertices,
edges, and faces of X , and ∂ : C• → C• would be a linear map which decreases grading by 1 and
squares to zero. (We can just define the boundary of any vertex to be zero.) Why is C• not a DGA?

4. Let R= R2 − {(0,0)} and consider the 1-form λ ∈ Ω1(R) defined by

λ= −
y

x2 + y2
d x +

x
x2 + y2

d y.

(a) Verify that dλ= 0.
(b) Next, we want to show that λ is not the total differential of some function. We’ll do this in steps.

i. Let C be parametrized by r(t) = (cos 2πt, sin2πt), 0≤ t ≤ 1. Compute
∫

C λ.
ii. (Challenge) With the same C, show that if f : R→ R is a smooth function, then

∫

C
d f = 0.

Hint: At some point you’ll need the following version of the chain rule: d
d t ( f (r(t))) =∇ f · r′(t).

iii. Use the previous two parts to conclude that λ ̸= d f for any function f : R→ R.
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This problem demonstrates that, for the deRham differential d, image(d) can be a strict subset of
ker(d); the difference between these two sets is determined by the topology of R.

5. The following is a representation of the torus T 2:

We obtain a surface in R3 by identifying the blue horizontal edges in a way that respects their orientations,
and doing the same for the red vertical edges. Just as we did for the cube in problem 3, we break T 2 into
faces; these faces have edge boundaries, and the edges have vertex boundaries. The orientations are as
labeled. (Notice the repeated labels! Those are intentional!) Repeat as much of problem 3 as you can,
with T 2 playing the role previously played by X .

6. In class we computed the (linearized) Legendrian contact homology for the Legendrian unknot. The
Legendrian unknot is shown in the figure below; the front projection is on the left of the figure and the
Lagrangian projection of the knot is on the right.

(a) Compute the rotation number of this knot.
(b) Compute the path γ1 for the crossing a1, labeled a.
(c) Verify that |t|= 0 and |a|= 1 for the Chekanov-Eliashberg DGA associated to this knot.

7. In class we computed the (linearized) LCH for the Legendrian knot mirror(52). In so doing, we wrote
the differential ∂1 : (Z2)4→ (Z2)3 as a matrix.

∂1 =





1 0 1 0
0 0 1 1
0 1 0 1





Find the correct sequence of row and column operations that will reduce this matrix to echelon form. At
each step, keep track of what the row or column operation does to the basis in the domain and the basis
of the codomain of ∂1.

8. Use the bases that you computed in the last exercise to write an explicit module generator for H1(Λ) for
the Legendrian mirror(52). Recall that we found H1

∼= (Z2)1.
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5 June 9 Exercises
1. Devise an algorithm for determining the generators and gradings of AΛ from the front projection F(Λ).

Note: You can check your work by consulting Etnyre-Ng.

2. For the Legendrian trefoil presented in class, use your algorithm to verify the gradings |ai |. Then compute
whichever differentials ∂Λai we did not compute in class.

3. Compute (AΛ,∂Λ) for the Legendrian unknot whose front projection is seen here:

4. Consider the Chekanov pair, with front projections given by

Add a basepoint to the bottom arc of each knot, and orient the top arc left-to-right. Then compute
(AΛ,∂Λ) for each knot.

5. Suppose that Λ′ is obtained from Λ by applying a Legendrian Reidemeister I move in the front projection.
Describe how to obtain (AΛ′ ,∂Λ′) from (AΛ,∂Λ).
Note: You may want to start with the case where the Legendrian Reidemeister move is applied along a
topmost arc of F(Λ).

The last two exercises are intended to stimulate open-ended discussion.
6. Discuss what it will mean to filter a Legendrian knot Λ by action. Assuming that each Reeb chord in

exercise 2 has action 1, try to sketch Λk/2, k = −1,0, 1,2, 3.
Hint: You should start by convincing yourself that the action of a Reeb chord is given by its height.

7. A common strategy for simplifying the computation of (AΛ,∂Λ), given F(Λ), is to apply Legendrian
Reidemeister moves until all left cusps of F(Λ) have the same x-coordinate, as do all right cusps of
F(Λ). We say that the resulting F(Λ) is in Legendrian plat position. In general, this will introduce more
generators for AΛ. How could this make the computation of (AΛ,∂Λ) simpler?
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6 June 12 Exercises
1. In class, we saw a concrete parametrization of the Legendrian unknot.

γ(t) = (x(t), y(t), z(t)) = (cos(t),
3
2

cos(t) sin(t),
−1
2

sin3(t)).

The domain is 0≤ t ≤ 2π. You are strongly encouraged to plot this curve in three-space.
(a) Translate each coordinate by 10 units, e.g. (x , y, z) 7→ (x+10, y, z), and similarly for y and z. Which

of these translations results in a Legendrian knot?
(b) Project a Legendrian knot onto just a single axis, which will give a compact interval as the image.

Which projection, if any, must contain the origin? Example: Project the knot parametrized by γ(t),
above, onto just the x-axis, and you get the interval [−1, 1].

(c) Make sure you understand how to compute the height of a Reeb chord using a definite integral.
2. Can you generate a three-dimensional parametrization of the Legendrian unknot that has n crossings in

its front projection? The front projection is shown here.

Hint: The case n= 0 should be easy.
3. Give the Lagrangian projection of a knot any orientation. Prove that the Lagrangian projection must

contain signed area zero. (This means the signed area enclosed by the entire knot, not just a single lobe.)
4. Suppose you are given the image of the Lagrangian projection of a knot, and you don’t necessarily

have a parametrization. Devise a method for assigning an action (Reeb height) to each crossing in the
Lagrangian projection. In particular:
(a) You should understand what happens to the height assignments when the knot is dilated according

to the Legendrian isotopy (x , y, z) 7→ (x , s · y, s · z), 1≤ s ≤ 2.
(b) Using Legendrian dilations, can you ensure that all actions that you assign are ≥ 1 and at least one

crossing gets assigned action = 1?
(c) In problem 1(a) of this problem set, you discovered which translations result in Legendrian isotopies.

What happens to your assignment of action if a knot undergoes a Legendrian translation?
5. Re-visit problem 6 from Friday’s problem set, now that you know how to compute the action explicitly.

You should now be able to generate (computer generate) plots of the filtered manifold.
6. For any Legendrian knot Λ, and for ℓ≥ 0 define A ℓΛ to be the subset of AΛ that has generators of action

(Reeb length) at most ℓ.
(a) Check that A ℓΛ is a graded sub-module of AΛ.
(b) Check that A ℓΛ is a unital sub-algebra of AΛ. Recall that t is defined to be height 0.
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7 June 13 Exercises

1. Let Λ ⊂ R3 be a Legendrian knot. We say that a Reeb chord c of Λ is contractible if there is a Legendrian
isotopy Λc

s , s ∈ [0,1], such that
(i) Λc

0 = Λ;
(ii) the Reeb chord of Λc

1 which has smallest action corresponds to c;
(iii) the isotopy Λc

s corresponds to a planar isotopy of Π(Λ)— that is, no Reidemeister moves are allowed.
For our usual Legendrian trefoil (c.f. Figure 6 of Etnyre-Ng), determine which of the five Reeb chords are
contractible.

2. Consider the Legendrian unknot Λ whose front projection is depicted in exercise 2 of yesterday’s problem
set, with n crossings. Identify the n+1 Reeb chords of Λ in the front projection — i.e., without translating
to a Lagrangian projection. Describe a planar isotopy of F(Λ) which will ensure that the Reeb chords
have distinct actions.

3. Show that if Λ is a stabilized Legendrian knot, then the Legendrian contact homology of Λ is trivial.
Hint: Stabilization will introduce one new Reeb chord; think about this Reeb chord in the front projection to
convince yourself that its action can be made arbitrarily small.

4. Consider the Legendrian knots Λ1 and Λ2 whose front projections are given as follows:

Identify a stable tame isomorphism Φ: (AΛ1
,∂Λ1
)→ (AΛ2

,∂Λ2
).

5. Consider the DGA (AΛ,∂Λ) computed for the Legendrian trefoil in exercise 5 of last Friday’s problem set.
By setting t = 1 and reducing all coefficients modulo 2, we obtain a DGA over Z2. Find all (0-graded)
augmentations of this DGA to Z2. (There are five.)

6. Repeat the above problem for the Chekanov-Eliashberg DGAs of the Chekanov pair, as previously
computed. (The two knots will not have the same number of augmentations.)
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8 June 14 Exercises
1. Compute the following two tensor products, as interval modules.

(a) Q[3,4)⊗Q[1,8)∼=
(b) Q[p2,∞)⊗Q[π,∞)∼=
(c) What is a module generator of each module above?

2. Write down the persistence module of DGAs that is the Chekanov-Eliashberg DGA corresponding to the
filtered Legendrian trefoil. Your filtration corresponds to the pictures that you drew for exercise 6 on
June 9. Diagram this as a direct sum of interval modules.
Note: You won’t be able to compute persistent homology yet, but you can still make informative diagrams.

3. Recall that it is currently unclear how you assign heights to an un-parametrized knot diagram. On
Monday (June 12) you started discussing this problem.
(a) In class I will draw the Lagrangian projection of the Legendrian trefoil, with a specific labeling of

the crossings. Check that area positivity gives the following inequalities on heights. (Abbreviate
Reeb height(a1) = h1.)

h1 > 0

h2 > 0

h1 − h3 − h4 − h5 > 0

−2h1 + h2 + h3 + h5 > 0

h3 + h4 > 0

h4 + h5 > 0

(b) How could you assign heights h1, ..., h5 that satisfy the above inequalities? One method is guess-
and-check.

(c) Do this again for the Legendrian Hopf Link. (This is a link, not a knot, but you still can assign
heights using contact geometry!)

4. Filter the unit 2-sphere x2 + y2 + z2 = 1 by height in the z-coordinate. In this exercise you will compute
persistent Morse homology for this filtered manifold. Use ground ring = R. A guide follows.

• You should be able to draw the sub-level set of all points having height ≤ ℓ if you are given ℓ.
• The entire manifold M = S2 has exactly one critical point of degree 2 and exactly one critical point

of degree 0. These critical points correspond to the global minimum and the global maximum of
the height function. Identify these points on the filtered manifold(s), and give these points names.

• Write down the free persistence modules that make up the Morse chain complex. Generators
correspond geometrically to the points that you named.

• Since there are no critical points of index 1, all the Morse chain complex differentials must be zero
maps. Hence d ·· = 0 for every Z-grading and every R-grading.

• You should now be able to compute persistent Morse homology as a direct sum of graded modules.
5. Re-compute the homology of the boundary cube from exercise 3 on June 8. This time, you will compute

persistent homology by filtering the surface of the cube by height. Imagine that the surface of the cube is
embedded in R3 in a way that is “tilted” so that the global height minimum is a single vertex. Similarly
the global height maximum should be a single vertex. For the ground ring, use Q.

• You should be able to formulate the (filtered) chain complex as a chain complex of (direct sums of)
free persistence modules.

• The chain complex differential is an R-filtered collection of Q-linear transformations.
• You should be able to formulate persistent homology as a direct sum of interval modules.
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9 June 15 Exercises
Throughout this problem set, treat (AΛ,∂Λ) as a DGA over Z2 (rather than Z).

1. Prove that if the Chekanov-Eliashberg DGA (AΛ,∂Λ) is obtained by starting with a front projection,
applying Ng’s algorithm to produce a Lagrangian projection, and then using the Reeb chords of this
Lagrangian projection to generate AΛ, then (AΛ,∂Λ) is not augmented.

2. Verify that (AεΛ,∂ εΛ ), as defined in class, is augmented.
3. Let Λ be the Legendrian trefoil given in Figure 6 of Etnyre-Ng, and let ε be your favorite of the five

augmentations of (AΛ,∂Λ) to Z2 identified yesterday. Compute LCHε∗ (Λ) and LCH∗ε(Λ).
4. Prove that the Legendrian knots which make up the Chekanov pair (c.f. June 5 exercises) are not

Legendrian isotopic.
Note: It is not sufficient to observe that the Chekanov-Eliashberg DGAs of these knots have distinct numbers
of augmentations.

5. Let Λ be a standard Legendrian unknot, as parametrized in the June 12 exercise set. Using the action(s)
computed from that parametrization, we may filter (AΛ,∂Λ) to produce (AℓΛ,∂ ℓΛ) for any 0≤ ℓ≤∞, as
in class on Monday. Use this filtration, along with the augmentation ε: (AΛ,∂Λ)→ (Z2, 0) from class
today, to compute the persistent linearized Legendrian contact homology of Λ.

6. Repeat the above exercise for the Legendrian trefoil presented in class yesterday, using some choice of
heights h1, . . . , h5 which you made in yesterday’s problem session.
Warning: I (Austin) have not actually attempted this computation.
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10 June 16 Exercises
1. Compute the persistent linearized Legendrian contact homology of the standard Legendrian trefoil two

more times.
(a) Use a different assignment of heights than was done in class, and different than you used yesterday.
(b) Try an assignment that gives each generator a different height.
In either of the above computations, you should find that the Poincaré-Chekanov polynomial for the
standard trefoil is 2+ t. The only thing that changes is the left-endpoints of the interval modules that
make up your persistent homology picture. We conjecture that there is some equivalence relation that
will treat all the pictures as equivalent, no matter your assignment of Reeb heights.

2. A Hopf Link can be realized as a standard Legendrian unknot that has been translated some distance
away from another standard unknot. Which direction is the most natural for translation, given your
answer to the isotopy exercise? With this definition, can you draw the Lagrangian projection of a Hopf
link having all Reeb heights equal?
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11 July 7 Exercises
1. You can dualize the A∞ relation to get a relationship on ∂ j . For each ℓ≥ 1, we have

0=
∑

i+ j+k=ℓ

(1⊗i ⊗ ∂ ε( j) ⊗ 1
⊗k) ◦ ∂ ε(i+1+k.

Warning: This sum is not taken over all possible combinations of i, j, k. Instead, you can only add
operators that have the same domain and the same codomain.
Check that this relationship holds for ℓ= 1,2, 3 for the ∂ ε(ℓ) defined for the right-handed trefoil. Remember
that we use Z2 coefficients!

2. Find a height assignment for the knot that Austin described in his example from class. Draw the barcode
for the knot, and consider what happens to heights when you multiply various Reeb chords.
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