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Abstract

Linearized contact (co)homology, an invariant calculated from the Chekanov-Eliash-

berg DGA of a Legendrian knot, can distinguish knots with the same classical invari-

ants. A recently developed invariant, product structure—composing of cup, Massey,

and higher-order Massey product structures, preserves some lost information in the

linearization process. In this report, we apply these product structure invariants to

investigate a pair of m(77) Legendrian knots which are believed to be distinct given

in Legendrian knot atlas, and we present the detailed computation of obtaining their

isomorphic cup product structure. We prove a proposition which characterizes a suffi-

cient condition for Massey products or higher-order Massey products to be trivial. We

then apply this proposition to our pair of knots, determining that product structure

is insufficient to distinguish the pair, and we conclude that product structure cannot

distinguish any pair in the atlas.

1 Introduction

Classical invariants for Legendrian knots introduced in [4], such as Thurston-Bennequin num-
ber and rotation number, have been used to compare two Legendrian knots. Two Legendrian
knots are not Legendrian isotopic (i.e., distinct) if they have different invariant quantities,
though having the same invariants does not necessarily imply that the Legendrian knots are
Legendrian isotopic.

By the results shown in [5], cup product, Massey product, and higher-order Massey
product structures are Legendrian isotopy invariants. We use these invariants to compare
two m(77) knots in the atlas given in [2] in hope that these two knots can be distinguished.
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From the atlas, we chose two m(77) knots represented in Figure 1.0.1. They are better
candidates than any other pair that is believed to be distinct in the atlas for obtaining
product structure, because they have augmentations and we could apply product structure
to potentially distinguish them. The reasons we chose knots with augmentations are:

• (Higher-order) Massey product is defined using an A∞ structure on linearized contact
cohomology, which requires augmented differentials; thus without augmentations, we
would not be able to obtain product structure.

• In the atlas of [2], the Poincaré-Chekanov polynomial of the two knots is given, so we
use it as a reality check, making sure we get the correct DGAs.

Though the product structure is shown to not be able to distinguish this pair, we proved
a proposition that characterizes some criteria to determine if the product structure is trivial.
As a result, no pair in the atlas can be distinguished by their product structure.

Figure 1.0.1: Front projections of m(77) knots (Λ1 on the left, Λ2 on the right)
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2 Background

2.1 Legendrian Knot and Front Projection

In this report, the knots we are concerned with are Legendrian knots in the standard contact
3-manifold, (R3, ξstd), where ξstd = kerα, and α is the standard contact form dz − ydx.

Definition. A knot Λ is Legendrian if it has a regular parametrization φ: S1 −→ R3

defined by θ 7−→ (x(θ), y(θ), z(θ)) such that for all θ,

z′(θ)− y(θ)x′(θ) = 0,

that is,

αφ(θ)(φ
′(θ)) = 0.

Several types of diagrams are used to represent a Legendrian knot in this report: front
projection, Lagrangian projection, and grid diagram.

Front projection is the projection of a Legendrian knot into the xz-plane. By the
condition imposed on the knot, z′(θ) − y(θ)x′(θ) = 0, we cannot have vertical tangency in
the front projection. Lagrangian projection is the projection of a Legendrian knot into
the xy-plane. The geometric conditions placed on Legendrian knots allow us to consider
a well-defined resolution which converts a front projection into a Lagrangian projection,
and vice versa. To convert a front projection into a Lagrangian projection, left cusps are
smoothed out and right cusps are smoothed and twisted to add an extra crossing in the
resulting projection, as shown in Figure 2.1.1. Grid diagram is a computer-recognizable
version of front projection, and its details are left to the next subsection.

Figure 2.1.1: (1) Resolution of a left cusp; (2) Resolution of a right cusp

Similar to the effect that Reidemeister moves have on topological knots, Legendrian
Reidemeister moves (shown in Figure 2.1.2), when applied to the front projection of a Leg-
endrian knot, does not change its Legendrian isotopy type. The following theorem in [6]
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further characterizes the relation between Legendrian Reidemeister moves and Legendrian
isotopy.

Theorem 2.1.1. Two front projections represent Legendrian isotopic Legendrian knots if
and only if they are related by a finite sequences of Legendrian Reidemeister moves and
regular homotopies.

Figure 2.1.2: Three Legendrian Reidemeister moves

2.2 Grid Diagram and Cromwell Moves

As introduced in [2], a grid diagram is an n × n grid with each of n X’s and n O’s
occupying one square distinct from another such that only one X and one O are in each row
and in each column. By connecting O’s to X’s horizontally and X’s to O’s vertically, and let
the vertical strand come in front of the horizontal one whenever there is a crossing, we obtain
its associated oriented link or knot. To convert the grid diagram into front projection, we
rotate the grid diagram 45◦ counterclockwise and smooth corners pointing towards horizontal
direction.

Given a grid diagram, we can perform Cromwell moves on it: they are modifications to
the grid without changing the smooth isotopy type of the Legendrian knot the grid diagram
represents. A subset of Cromwell moves, which plays a similar role as Reidemeister moves
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for the front projection, does not change the Legendrian isotopy type of the associated
Legendrian knot of a grid diagram. This subset contains

• torus translation: move the leftmost (or rightmost) column of the grid to rightmost
(or leftmost) column, or move the uppermost (bottommost) row to bottommost (or
uppermost) row;

• commutation: switch two adjacent rows (or columns) in which segments connecting
O’s to X’s (or X’s to O’s) are either disjoint or nested when projected to a single
horizontal (or vertical) line;

• X:NE and X:SW stabilization and destabilization: two of four possible X stabiliza-
tions displayed in 2.2.1, which consist of adding a row and a column to the grid in a
way that preserves the Legendrian isotopy class.

Figure 2.2.1: Two types of Legendrian-isotopy-preserving X stabilizations

2.3 Chekanov-Eliashberg DGA

Ckekanov, following ealier work of Eliashberg, constructed the Chekanov-Eliashberg DGA,
a means of assigning to any given Legendrian knot a differential graded algebra that can be
used to calculate newer invariants [1, 3]. There are many different ways to define this DGA,
preserving various levels of information, and having various degrees of computability. Our
project focuses on Legendrian knots which have rotation number 0, which allows us to use a
simplified version of the Chekanov-Eliashberg DGA, as will be explained during this section.
This subset of Legendrian knots will be useful because having rotation number 0 is necessary
(although not sufficient) for the existence of augmentations to the base field, which will be
necessary for further calculations.
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The algebra that we will use is defined over Z2 and generated by the Reeb chords of
our knot. In the Lagrangian projection these correspond to the crossings. The geometric
intuition for the DGA comes from considering a knot’s Lagrangian projection, but it can
be calculated combinatorially from the front projection. When defining the DGA from the
front projection (as we have done in our research) the generators correspond to crossings and
right cusps, since right cusps become crossings when converting from front to Lagrangian
projections.

It is then simple to assign a grading to each of these generators. Generators associated
with a right cusp have a grading of 1, and for generators associated with a crossing we must
consider a capping path. This is simply a path traced out on the front projection of our
knot from the overstrand of the crossing to the understrand. For each capping path γ we
will denote D(γ) as the number of cusps travelled downwards, and U(γ) as the number of
cusps travelled upwards. Then the generator associated with a crossing has a grading of
D(γ)− U(γ). Of course, for each crossing there will be two distinct capping paths, but for
knots with rotation number 0, both paths will give the same grading for each generator.
Defining the grading of generators on other Legendrian knots requires more detail, which we
will not need to consider for this report.

The differential is the most complicated part of the DGA to define. For each generator
ai we must consider maps of the unit disk with some number of boundary punctures to
the xz-plane, such that the maps are immersions of the disk into the knot that meet some
specific criteria:

1. Each of the boundary punctures of the disk must be mapped to a crossing or right cup
of the projection;

2. The first boundary puncture must mapped to ai such that the immersion covers a left
or right quadrant of the associated crossing;

3. All other boundary punctures must be mapped to generators in such a way that the
immersion covers an upper or lower quadrant of the associated crossings.

Then we assign a word to each immersion, which is a noncommutative product of all the
generators mapped to along the boundary punctures of the disk (except ai). Then the
differential of ai is the formal sum of the words of all possible immersions associated with
that generator (with an extra +1 if the generator ai denotes a right cusp). More information
on this DGA, including examples, can be found in [4].
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2.4 Linearized Contact (Co)homology

Defined on a (co)chain complex—in our case, Chekanov-Eliashberg DGA as above—the
(co)homology measures the failure of exactness. The (co)homology of the C.E. DGA is
called Legendrian contact homology (LCH), a Legendrian isotopy invariant.

Since the computability and usefulness of LCH are often in contrary positions, to strike a
balance between the two, we often use augmentation and linearization to obtain a modified
differential, thus resulting in linearized contact (co)homology.

Definition. Given (A, ∂) a DGA, a map ε : A −→ Z/2 is an augmentation if

• ε(1) = 1,

• ε ◦ ∂ = 0, and

• ε(x) = 0 whenever |x| ≠ 0.

Note that an augmentaion does not always exist for a DGA, and a DGA might admit sev-
eral augmentaions. When at least one augmentation exists, we obtain a linearized differential
by first considering a map gε : A −→ A defined by

gε : a 7−→ a+ ε(a),

thus resulting in augmented differential

∂ε = gε∂g
−1
ε ,

then for each augmentation ε of (A, ∂), after eliminating nonlinear terms of ∂ε, we have a
linearized chain complex (A, ∂ε). By taking A′ with basis dual to basis of A and δε the
adjoint of ∂ε, we have a cochain complex (A′, δε), and homologies of these two complexes are
linearized contact homology and linearized contact cohomology, denoted by LCHε

∗

and LCH∗
ε , respectively.

2.5 A∞-Structure

Our research focus being knots with identical linearized Legendrian contact homology, we
needed to study and utilize techniques for extracting information lost during the process of
linearization. Our major tools to do this were the product structures defined in [5] by Civan,
Entyre, Koprowski, Sabloff, and Walker. This strategy begins with an augmented differential
and uses it to define an A∞-structure. This involves defining an infinite collection of maps
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mn, n ∈ Z+, where the map mn inputs a permutation of n generators from the DGA and
outputs information about where this permutation appears in the augmented differential.
The maps mn must satisfy the A∞ relations. The relations for m1 is m1 ◦m1 = 0, and for
m2 is m1(m2(a, b)) = m2(m1(a), b) + (−1)|a|m2(a,m1(b)). The rest can be found in [5].

More precisely, if the word a1...ak appears in the differentials ∂a1,...,∂ai then we have:

mk(a1, ..., ak) = a1 + ...+ ai.

If the word a1, ..., ak is not a term in the augmented differential then we have mk(a1, ..., ak) =

0. Of course, because the augmented differential contains only finitely many terms, only a
relatively small amount of terms mk(a1, ..., ak) will be non-trivially defined. However, this
A∞-structure is a method of expressing the nonlinear information from a knot’s augmented
differential in a way that can be used in calculations, particularly in the calculations of
cup products, Massey products, and higher-order Massey producs, which is the next idea
discussed by Civan, Entyre, Koprowski, Sabloff, and Walker. It is also worth noting that
terms such as m2(a1 + a2, a3) can be evaluated by distribution as m2(a1, a3) +m2(a2, a3).

2.6 Cup Product Structure

Civan, Etynre, Koprowski, Sabloff, and Walker demonstrate how the A∞-strucutre previously
defined can be used to define a cup product structure for a knot. They begin by treating the
m1 map as a new differential and taking its homology. This can be done because the map
is defined in such a way that it is itself linearized and one can check that m1 ◦m1 = 0. This
will result in a collection of classes LCHn

ε
∼= Z2⟨a1n, ..., alnn ⟩ where each generator a1n, ..., a

ln
n

corresponds to an equivalence class of elements in the kernel of m1 with grading n.
The cup product structure is then defined on the finite set of all ak, ...,mk where LCHk

ε

is nontrivial. It is defined as follows:

ai ∪ bj = [m2(a, b)] where a ∈ ai and b ∈ bj

We also have that the cup product ai ∪ bj will be an equivalence class with elements of
grading i + j + 1. It will be important to remember that the cup product is distinct from
the map m2 because it is defined as an equivalence class of generators (and possibly sums
of generators), not as an individual generator. This cup product structure is an invariant
of Legendrian knots, so if two knots have cup product structures which are not isomorphic
then they are distinct. For knots that have isomorphic cup product structures, (higher-order)
Massey products can be used to attempt to distinguish them, as Civan, Entyre, Koprowski,
Sabloff, and Walker next explain in the text.
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2.7 (Higher-Order) Massey Product Structure

Cup product is generalized into Massey product, which is then further generalized into
higher-order Massey product in [5]. Since the product structure is invariant under Legendrian
isotopy, we can then use this structure to distinguish a pair of Legendrian knots if they satisfy
certain conditions which we will introduce below.

Definition. For [a], [b], [c] elements in LCH∗
ε with gradings r, s, t, respectively, satisfying

[a] ∪ [b] = 0 = [b] ∪ [c],

then the Massey product

{[a], [b], [c]} ∈ LCHr+s+t+1
ε

([a] ∪ LCH∗
ε + LCH∗

ε ∪ [c]) ∩ LCHr+s+t+1
ε

,

and it is given by the formula

{[a], [b], [c]} = [m3(a, b, c) +m2(a, x) +m2(y, c)],

where x, y satisfy

m1(x) = m2(b, c),

m1(y) = m2(a, b).

Using A∞-structure, higher-order Massey product is defined inductively in a similar way
as the triple Massey product. More specifically, {[a1], . . . , [an]} is an equivalence class of all
ways of performing lower-order Massey products.

3 Work/Result

3.1 Perform Cromwell Moves

The original grid diagram of the m(77) knots from [2] gives us front projections of the two
knots in Figure 1.0.1. Notice that there is one right cusp being looped in another right
cusp in both knots. This would make our future steps of finding the DGAs for the two
knots difficult, since the original projections have immersed disks we would need to count.
More details can be found in [4]. Therefore, before doing computations on the pair of m(77)

knot, we want to make them easier to deal with by performing the Cromwell moves on grid
diagrams, as mentioned in previous section, so that the new projections allow us to count
embedded disks only.
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Figure 3.1.1: Λ1, torus translation on grid diagram

Figure 3.1.2: Λ2, torus translations on grid diagram

For Λ1, we performed one torus translation by moving the leftmost column to the right-
most column, as showing in Figure 3.1.1.

For Λ2, we performed two torus translations by moving the bottommost row to the
topmost row and moving the leftmost column to the rightmost column, as shown in Figure
3.1.2.

3.2 DGA Computation

We obtained the Chekanov-Eliashberg DGAs of the two m(77) knots from their front projections—
recall that they are converted from the grid diagrams by rotating them 45◦ counterclockwise
and smoothing out the top and bottom corners.

The gradings for the right cusps are 1, and we get the gradings for the crossings by
computing D(γ)− U(γ) for a capping path γ.

The gradings for Λ1 (labels of the generators are given in Figure 3.2.1):

1 = |a1| = |a2| = |a3| = |a4| = |b3| = |b7|,
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0 = |b1| = |b2| = |b5|,

−1 = |b4| = |b6|;

and the gradings for Λ2 (labels of the generators are given in Figure 3.2.2):

1 = |a1| = |a2| = |a3| = |b5| = |b8|,

0 = |b1| = |b2| = |b3|,

−1 = |b4| = |b6| = |b7| = |b9|,

−2 = |b10|.

Figure 3.2.1: Front projection of Λ1 after Cromwell move

We obtain the differentials by counting the disks starting and ending on each generator.
When we start counter-clockwise at a generator and move along the strand, we can make
turns at the crossings we pass. We can only make turns at up or down quadrants and cover
at most two quadrants. Notice that each crossing makes four quadrants and each right cusp
makes one—the reason is that each quadrant has positive or negative Reeb signs (in our
figures the labeled “ + ” quadrants and their opposites are positive; the rest are negative,)
and we can only turn at crossings which cover up a quadrant with negative Reeb sign. For
example, for the first m(77) knot, if we start from the right cusp a1, we get four disks b5,
b5b4b3, b7b6b5, and b7b6b5b4b3. Each bi records each puncture at bi crossing.

The differentials for Λ1:

∂a1 = 1 + b5 + b5b4b3 + b7b6b5 + b7b6b5b4b3,
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Figure 3.2.2: Front projection of Λ2 after Cromwell moves

∂a2 = 1 + b2 + b3b4b2,

∂a3 = 1 + b2b5b1,

∂a4 = 1 + b1 + b1b6b7,

∂bi = 0 for i = 1, . . . , 7;

for Λ2:

∂a1 = 1 + b2 + b5b4b2 + b8b7b2 + b8b7b5b4b2,

∂a2 = 1 + b2b1 + b2b9b8 + b5b10b8 + b2b9b5b1 + b2b6b5b1 + b2b3b5b10b8 + b2b9b8b7b5b1,

∂a3 = 1 + b1 + b4b8 + b6b8 + b1b7b8 + b4b5b6b8,

∂b1 = b10b8 + b4b5b10b8,

∂b3 = b4 + b6 + b9 + b6b5b4 + b9b5b4 + b9b8b7 + b9b8b7b5b4,

∂b6 = b10 + b10b8b7,

∂b9 = b10,

∂bi = 0 for i = 2, 4, 5, 7, 8, 10.

3.3 Augmented Differential Computation

By the conditions imposed on an augmentation as defined in previous section, we have the
following results.

For Λ1, there is only one augmentation ε such that ε(b1) = ε(b2) = ε(b3) = 1 and the rest
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are zero. Thus, it has its augmented differentials:

∂εa1 = b5 + b4b3 + b7b6 + b5b4b3 + b7b6b5 + b7b6b4b3 + b7b6b5b4b3

∂εa2 = b2 + b3b4 + b3b4b2

∂εa3 = b1 + b2 + b5 + b2b1 + b2b5 + b5b1 + b2b5b1

∂εa4 = b1 + b6b7 + b1b6b7

∂εbi = 0 for i = 1, . . . , 7.

For Λ2, there are two augmentations ε1 and ε2 such that ε1(b1) = ε1(b2) = 1, ε(b3) = 0,
and ε2(b1) = ε2(b2) = ε2(b3) = 1. Note that these two augmentations will result in the
same augmented differentials, as b3 does not appear in any term of any differential, so let ε

invariably denote either augmentation. Thus, we have the following augmented differentials:

∂εa1 = b2 + b5b4 + b8b7 + b5b4b2 + b8b7b2 + b8b7b5b4 + b8b7b5b4b2

∂εa2 = b1 + b2 + b9b8 + b9b5 + b6b5 + b2b1 + b2b9b8 + b2b9b5 + b9b5b1 + b2b6b5 + b6b5b1 + b5b10b8

+ b3b5b10b8 + b9b8b7b5 + b2b9b5b1 + b2b6b5b1 + b2b3b5b10b8 + b2b9b8b7b5 + b9b8b7b5b1

∂εa3 = b1 + b7b8 + b4b8 + b6b8 + b1b7b8 + b4b5b6b8

∂εb1 = b10b8 + b4b5b10b8

∂εb3 = b4 + b6 + b9 + b6b5b4 + b9b8b7 + b9b5b4 + b9b8b7b5b4

∂εb6 = b10 + b10b8b7

∂εb9 = b10

∂εbi = 0 for i = 2, 4, 5, 7, 8, 10;

3.4 Linearized Contact (Co)homology Calculation

After finding the augmented DGAs for our knots we were able to use these to confirm the
linearized contact homology as given in the Legendrian knot atlas. While computing this
invariant for both knots would not help us to tell them apart, it is a nice reality check on
our differentials for the knots, thus a necessary and nontrivial task.

Given the augmented differentials, to calculate linearized contact homology, the first step
is linearizing augmented differentials. Λ1 has the following linearized differentials:

∂ε
1a1 = b5

∂ε
1a2 = b2

∂ε
1a3 = b1 + b2 + b5
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∂ε
1a4 = b1

∂ε
1bi = 0 for i = 1, . . . , 7.

Λ2 has the following linearized differentials:

∂ε
1a1 = b2

∂ε
1a2 = b1 + b2 + b8

∂ε
1a3 = b1

∂ε
1b3 = b4 + b6 + b9

∂ε
1b6 = b10

∂ε
1b9 = b10

∂ε
1bi = 0 for i = 1, 2, 4, 5, 7, 8, 10.

To compute the LCH for our first knot, we consider the following maps:

∂1 : A1 → A0

∂0 : A0 → A−1

∂−1 : A−1 → A−2

These are used in the following calculations for homology:

LCH1 = ker(∂1) = Z2⟨a1 + a2 + a3 + a4, b3, b7⟩

LCH0 =
ker(∂0)

im(∂1)
=

Z2⟨b1, b2, b5⟩
Z2⟨b1, b2, b5⟩

= 0

LCH−1 = ker(∂−1) = Z2⟨b4, b6⟩

The Poincaré polynomial 3t + 2t−1 contains this information. Likewise, with similar maps
∂1, ∂0, ∂−1, and ∂−2, the following calculations for homology can be made for our second
knot:

LCH1 = ker(∂1) = Z2⟨a1 + a2 + a3, b5, b8⟩

LCH0 =
ker(∂0)

im(∂1)
=

Z2⟨b1, b2⟩
Z2⟨b1, b2⟩

= 0

LCH−1 =
ker(∂−1)

im(∂0)
=

Z2⟨b4, b7, b6 + b9⟩
Z2⟨b4 + b6 + b9⟩

LCH−2 =
ker(∂−2)

im(∂−1)
=

Z2⟨b10⟩
Z2⟨b10⟩

= 0

The Poincaré polynomial for this knot is then 3t+ 2t−1 as well.
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3.5 A∞-Structure Calculation

Then, we calculated the A∞ structure.
For Λ1, the A∞ structure is:

m1(b1) = a3 + a4

m1(b2) = a2 + a3

m1(b5) = a1 + a3

m2(b4, b3) = a1

m2(b3, b4) = a2

m2(b7, b6) = a1

m2(b6, b7) = a4

m2(b2, b1) = a3

m2(b2, b5) = a3

m2(b5, b1) = a3

m3(b5, b4, b3) = a1

m3(b7, b6, b5) = a1

m3(b3, b4, b2) = a2

m3(b2, b5, b1) = a3

m3(b1, b6, b7) = a4

m4(b7, b6, b4, b3) = a1

m5(b7, b6, b5, b4, b3) = a1

and all other mk’s are trivial. We consider the m1 structure as our new differentials, and
we have

LCH∗
ε =

ker(m1)

im(m1)
=

Z2⟨a1, a2, a3, a4, b3, b4, b6, b7⟩
Z2⟨a3 + a4, a2 + a3, a1 + a3⟩

.

Let a3 + a4 = a2 + a3 = a1 + a3 = 0, and we get a1 = a2 = a3 = a4 in Z2. Then, we have the
cohomologies at each level:

LCH1
ε = Z2⟨a1, b3, b7⟩, LCH0

ε = 0, LCH−1
ε = Z2⟨b4, b6⟩,

and all other LCHn
ε ’s are trivial.

Remark. For ease of notation in the next subsection, let a = [a1] = [a2] = [a3] = [a4], b =

[b3], c = [b4], d = [b6], e = [b7].

For Λ2, the A∞ structure is:

m1(b1) = a2 + a3

m1(b2) = a1 + a2

m1(b4) = b3

m1(b6) = b3

m1(b9) = b3

m1(b10) = b6 + b9

m2(b2, b1) = a2

m2(b5, b4) = a1

m2(b8, b7) = a1
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m2(b7, b8) = a3

m2(b9, b8) = a2

m2(b9, b5) = a3

m2(b6, b5) = a2

m2(b4, b8) = a3

m2(b6, b8) = a3

m2(b10, b8) = a1

m3(b5, b4, b2) = a1

m3(b8, b7, b2) = a1

m3(b2, b9, b8) = a2

m3(b2, b9, b5) = a2

m3(b9, b5, b1) = a2

m3(b2, b6, b5) = a2

m3(b6, b5, b1) = a2

m3(b5, b10, b8) = a2

m3(b1, b7, b8) = a3

m3(b6, b5, b4) = b3

m3(b9, b8, b7) = b3

m3(b9, b5, b4) = b3

m3(b10, b8, b7) = b6

m4(b8, b7, b5, b4) = a1

m4(b3, b5, b10, b8) = a2

m4(b9, b8, b7, b5) = a2

m4(b2, b9, b5, b1) = a2

m4(b2, b6, b5, b1) = a2

m4(b4, b5, b6, b8) = a3

m4(b4, b5, b10, b8) = b1

m5(b8, b7, b5, b4, b2) = a1

m5(b2, b3, b5, b10, b8) = a2

m5(b2, b9, b8, b7, b5) = a2

m5(b9, b8, b7, b5, b1) = a2

m5(b9, b8, b7, b5, b4) = b3

and all other mk’s are trivial. Again, we consider the m1 structure being our new differ-
entials, and we have

LCH∗
ε =

ker(m1)

im(m1)

=
Z2⟨a1, a2, a3, b3, b5, b7, b8, b4 + b6, b4 + b9, b6 + b9⟩

Z2⟨a2 + a3, a1 + a2, b3, b6 + b9⟩

=
Z2⟨a1, a2, a3, b5, b7, b8, b4 + b6, b4 + b9⟩

Z2⟨a2 + a3, a1 + a2⟩
.

Let a2 + a3 = a1 + a2 = b6 + b9 = 0, and we get a1 = a2 = a3 and b6 = b9. Then, we have
the cohomologies at each level:

LCH1
ε = Z2⟨a1, b5, b8⟩, LCH0

ε = 0, LCH−1
ε = Z2⟨b7, b4 + b6⟩, LCH−2

ε = 0,

and all other LCHn
ε ’s are trivial.

Remark. Let a′ = [a1] = [a2] = [a3], b
′ = [b5], c

′ = [b8], d
′ = [b7], e

′ = [b4 + b6] = [b4 + b9].

3.6 Cup Product and Massey Product

After calculating LCH∗
ε for both of our knots, we calculate their cup product structures.

Most possible cup products are trivial, but each knot have some isomorphic nontrivial ones.
For our first knot, we have the following nontrivial cup products:

b ∪ c = [m2(b3, b4)] = [a2] = a,
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c ∪ b = [m2(b4, b3)] = [a1] = a,

d ∪ e = [m2(b6, b7)] = [a4] = a,

e ∪ d = [m2(b7, b6)] = [a1] = a.

Similarly, our second knot has the following nontrivial cup products:

b′ ∪ e′ = a,

e′ ∪ b′ = a,

d′ ∪ c′ = a,

c′ ∪ d′ = a.

These two cup product structures are isomorphic, so they do not distinguish our two m(77)

knots.
Our next step is to look at the Massey product structures for these two knots, to see if

those might distinguish them. However, we could in fact skip this step and conclude that all
of the possible Massey products for both knots would be trivial, based on facts about the
level of LCH to which Massey products belong. Because a Massey product must live in a
LCH at a level being the sum of the gradings of each generator (element in cohomology class
which is a component of the Massey product) plus 1, and because each possible generator
for our knots has either a grading of 1 or −1, then any Massey product (or odd-ordered
higher-order Massey product) must have an even grading. But as mentioned above, neither
knot has a nonzero element of even grading in their cohomologies. We then took the next
step of considering fourth order Massey products.

3.7 Proposition about Trivial Product Structure

Since the cup product structures are the same for the two m(77) knots, and triple Massey
products are trivial on them, instead of computing the quadruple Massey product specifically,
we then consider general higher-order Massey products. From the following proposition with
K = 2, all higher-order Massey products are trivial on this pair. Therefore, product structure
cannot be used to distinguish the two m(77) knots.

Proposition 3.7.1. Fix K > 1, suppose for all k ≥ K, we have that

[mk(c1, · · · , ck)] = 0 implies mk(c1, · · · , ck) = 0,

for all generators c1 through ck satisfying
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{[c1], · · · , [ck−1]} = 0 = {[c2], · · · , [ck]}.

Then for all k ≥ K + 1, the k-th order Massey products are trivial.

Proof. Consider the k-th order Massey product given by

{[c1], · · · , [ck]} = [mk(c1, · · · , ck) +mk−1-terms + · · ·+m2-terms].

Let 1 ≤ l ≤ k − 2, and let xk−l,i denote the i-th free variable among the (mk−l)-terms.
We wish to show all the terms in the k-th order Massey product will eventually vanish by
choosing each free variable to be 0. Now we proceed by induction on l.

For l = 1, we know m1(xk−1,i) = m2(ci, ci+1). Since

{[c1], · · · , [ck−1]} = 0 = {[c2], · · · , [ck]},

then

[ci] ∪ [ci+1] = 0 = [m2(ci, ci+1)],

and by assumption, we thus have

m2(ci, ci+1) = 0,

so we can choose xk−1,i = 0.
Suppose the hypothesis is true for all values less than l, consider the case for l, we have

m1(xk−l,i) = ml+1(ci, ci+1, · · · , ci+l),

as other terms containing free variables of previous levels vanish by induction hypothesis.
Then again, by assumption that the homology class of mk is zero implies mk is itself zero,
we can choose xk−l,i to be zero.

Hence all terms defined in the k-th order Massey product eventually vanish.

4 Conclusion

By Proposition 3.7.1, product structure cannot distinguish these two m(77) knots. After
examining all the pairs that are believed to be distinct in the atlas of [2], the two m(77)

knots form the only pair which has an augmentation; thus this is the only pair that has
product structure. On other pairs of knots in the atlas of [2], product structures cannot be
defined. Therefore, though there do exist knots for which product structure as an invariant
is useful to distinguish them, for example, certain knots and their Legendrian mirrors in [5],
product structure cannot be used to distinguish any pair of knots in the atlas of [2].
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