Math 4803 January 8, 2024

TODAY

1) Quick overview of the course 2) Warm up group work 3) Geometry of the Euclidean plane

Rough plan for topics
\nGoal (ambitions): Geometrization theorem
\nfor 3D manibolds
\nJan: Euclidean, hyperbolic,
$$
\frac{1}{5}
$$
 spherical
\nSeb: Surfaces via gluing
\nMar: Tessellations (i.e., pretty pictures)
\nApr: Group actions $\frac{1}{5}$ 3D geometries

Group Work OWrite each Complex number as x tig: (a) $\frac{1}{i}$ (b) $\frac{4+i}{b-3i}$ (c) i^{47} (2) Find the modulus of each complex number: (a) $\frac{3-i}{(6+2i)^3}$ (b) $(\sqrt{3}+i)(\sqrt{3}-i)$ (c) $\frac{i+2}{i-2}$ BConvert each to polar form re^{io}: $(a) \sqrt{3} + i$ (b) - 6 + 6 i 4 Convert each to rectangular form xtig:
(a) 3e^{it} (b) 7e⁻ⁱ⁻¹⁶

The Euclidean plane We want to discuss various
geometries in 2D. We'll start by developing the
familiar geometry of the
Euclidean plane in formal terms.

 $\rightarrow \mathbb{R}^2 = \{(x,y) | x,y \in \mathbb{R} \}.$

<u>Euclidean length</u>

A (differentiale) curve Y in
$$
\mathbb{R}^2
$$
 is parameterized
by [a, b] $\longrightarrow \mathbb{R}^2$, a diffable function.
 \leftarrow \longrightarrow (x(t), y(t)) *vector-valued*

Euclidean distance

The distance between points in R° is
defined using curves: for P, Q ER,
denc (P, Q):=inf{lenc(Y) | T is a p.w.d. curve?

From the curve definition we can recover the familiar formula for Euclidean distance.

Pop The line segment
$$
[P, Q]
$$
 minimizes Euclidean length among p -mid. Curves from $P + Q$.

\n $(Proof.)$ $+W$

\n $-$ piecewise differentiable

$$
Cor.\top f = P_o = (x_o, y_o) \text{ and } P_i = (x_i, y_i), \text{ then}
$$

 $d_{enc}(P_o, P_i) = (x_i - x_o)^2 + (y_i - y_o)^{21}$

Metric spaces
Our first example of non-Euclidean geometry
Will involve a familiar set of points with an un familiar way of measuring distances.
A metric space is a pair(X,d), where X is a set and $d: X \times X \rightarrow [0, \infty)$ is a function, s.t.
① $d(P, P) = 0$, $\forall P \in X$;
② $d(P, Q) = 0$ iff $P = Q$;
③ $d(P, Q) = d(Q, P)$, $\forall P, Q \in X$;
④ $d(P, R) \leq d(P, Q) + d(Q, R)$, $\forall P, Q, R \in X$.
Using the inequality

Metric spaces Metric spaces offer a good amount of structure because we can talk about limits ; continuity.

- $\bullet A$ Sequence $(P_n)=P_{1,1}P_{2,1}...P_{n,m}... \in X$ is said to <u>converge</u> to a <u>limit</u> LEX if, for every
E>0, there is some NEN s.t. $d(P_n L) < E$ for every $n \geq N$.
- A function $4: x \rightarrow \tilde{X}$ btun metric spaces (X,d)
and (\tilde{X}, \tilde{d}) is called <u>continuous</u> at $P_e \in X$ if, for every 20 , there is some 80 s.t. $d(P,P_o) < \delta \implies d(P(P), P(P_o)) < \epsilon$. "Continuous" = continuous @ every $P_{o} \epsilon X$

$$
\frac{\text{Vocal}}{\text{135}} \text{The ball with center } P_{o} \in X \text{ and radius } P_{o} \times P_{o} \text{ is } B_{d}(P_{o},r) = \{ P \in X \mid d(P_{o},P_{o}) < r \}.
$$

Isometics
\nA powerful way of studying the geometry of a metric space is to understand its group of symmetries. Here, a symmetry is an isometry.
\nAn isometry, but,
$$
(X,d)
$$
 and (\tilde{X},\tilde{d}) is a bijection $\Psi:X \to \tilde{X}$ such that $\tilde{d}(\Psi(P), \Psi(Q)) = d(P, Q), \Psi(P, Q \in X)$.
\nCheck: The inverse Ψ^{-1} is an isometry $\cdot \Psi$ is continuous $\frac{\text{Compositions of isometries are isometries}}{\text{(This is the group operator.)}}$

Isometics
\nEx Here are some isometries of
$$
(\mathbb{R}^2, d_{enc})
$$
:
\ntranslation : $\Psi(x,y) = (x + x_0, y + y_0)$
\nTotalition: $\Psi(x,y) = (x cos\theta - y sin\theta, x sin\theta + y cos\theta)$
\nreflection: $\Psi(x,y) = (x cos2\theta + y sin2\theta, x sin2\theta - y cos2\theta)$
\n $\left(\frac{[x_0, y_0]}{[x_0, y_0]}, \sum_{y_0 \neq 0} \int_{\theta} \frac{1}{[x_0, y_0]}{[x_0, y_0]} \right)$
\nFact: These generate all isometries of (\mathbb{R}^2, d_{enc}) .

Isometries Ex In complex coordinates: $translation : 4(z) = 2 + 20$ $Z = x + iy$ $\overline{z} = x - iy$
 $e^{i\theta} = cos\theta + i sin\theta$ $Totation: \varphi(z) = e^{i\theta}z$ $\int e^{-\int e^{-\frac{1}{2}} f(x)} dx$

Prop. If 4 is an isometry of (R², deuc) = (C, deuc), then there is a point Zo \in C and an angle $\theta \in \mathbb{R}$ $s.t.$ $\varphi(z) = e^{i\theta}z + z_0$ or $\varphi(z) = e^{i\theta}z + z_0$, for every $z \in \mathbb{C}$.

Next We'll spend the rest of January on non-Euclidean geometries, starting with the hyperbolic plane.