Math 4803 Homework Homework 2

Homework 2

Instructions

Complete the exercises on this page and upload your work to Gradescope by **12:29pm on February 5**. The optional exercises on page 2 need not be submitted.

Be sure to acknowledge your collaborators.

Exercises

- 1. Textbook exercise 2.7.
- 2. Textbook exercise 2.9.
- 3. Textbook exercise 2.10.
- 4. Textbook exercise 2.15.
- 5. Textbook exercise 2.16.
- 6. Textbook exercise 3.5.
- 7. Textbook exercise 3.6.
- 8. Let $X = \mathbb{R}^2 \{(0,0)\}$ be the punctured plane, and let \overline{X} be the partition of X consisting of all rays emanating from the origin. That is, for each $P = (x, y) \in X$, the corresponding element of \overline{X} is the subset

$$\overline{P} = \{(\lambda x, \lambda y) | \lambda > 0\}.$$

- (a) Identify a subset of \mathbb{R}^2 to which \overline{X} is homeomorphic. You don't need to prove the homeomorphism, but describe how you came up with the subset.
- (b) Show that, for every $\overline{P}, \overline{P}' \in \overline{X}$ and for every $\epsilon > 0$, there exist points $Q, Q' \in X$ such that $Q \in \overline{P}$, $Q' \in \overline{P}'$, and $d_{\text{euc}}(Q, Q') < \epsilon$.
- (c) Let $\overline{d}_{\text{euc}}$ be the quotient semi-metric on \overline{X} defined by the Euclidean metric d_{euc} of X. Use the definition of $\overline{d}_{\text{euc}}$ in terms of discrete walks to show that $\overline{d}_{\text{euc}}(\overline{P},\overline{P}') < \epsilon$ for every $\overline{P},\overline{P}' \in X$ and for every $\epsilon > 0$.
- (d) Show that $\overline{d}_{\text{euc}}(\overline{P}, \overline{P}') = 0$ for every $\overline{P}, \overline{P}' \in X$. Is $(\overline{X}, \overline{d}_{\text{euc}})$ a metric space?
- 9. Textbook exercise 4.3.

Math 4803 Homework Homework 2

Optional Exercises

- 1. Textbook exercise 2.12.
- 2. Textbook exercise 2.14.
- 3. Textbook exercise 2.19.
- 4. Consider the points $P_1 = (0,2)$ and $P_2 = (0,3)$ in the hyperbolic plane $(\mathbb{H}^2, d_{\text{hyp}})$, and let $[P_1, P_2]$ denote the vertical line segment connecting P_1 to P_2 .
 - (a) For each P = (0, y) in $[P_1, P_2]$ compute the hyperbolic distances $d_{hyp}(P, P_1)$ and $d_{hyp}(P, P_2)$.
 - (b) Find the hyperbolic midpoint of $[P_1, P_2]$, namely the point $P \in [P_1, P_2]$ such that $d_{\text{hyp}}(P, P_1) = d_{\text{hyp}}(P, P_2)$.
- 5. Textbook exercise 3.6.
- 6. In the sphere \mathbb{S}^2 , let N = (0,0,1) be the north pole. Describe each of the balls

$$B_{d_{\rm sph}}(N,\frac{\pi}{2}), \quad B_{d_{\rm sph}}(N,\pi), \quad B_{d_{\rm sph}}(N,\frac{3\pi}{2}), \quad {\rm and} \quad B_{d_{\rm sph}}(N,2\pi)$$

with a picture and a few words.

- 7. Textbook exercise 4.1.
- 8. Textbook exercise 4.4.