Homework 1

Instructions

Complete the exercises on this page and upload your work to Gradescope by **12:29pm on January 22**. The optional exercises on page 2 need not be submitted.

Be sure to acknowledge your collaborators.

Exercises

- 1. Textbook exercise 1.2.
- 2. Textbook exercise 1.5.
- 3. Textbook exercise 1.10.
- 4. Textbook exercise 2.1.
- 5. Textbook exercise 2.2.
- 6. Textbook exercise 2.8.
- 7. Let $\varphi : \mathbb{H}^2 \to \mathbb{H}^2$ be the map defined by the property that $\varphi(x, y) = (-x, y)$. (So φ is the Euclidean reflection across the *y*-axis.)
 - (a) Show that if γ is a curve in \mathbb{H}^2 , then $\ell_{hyp}(\varphi(\gamma)) = \ell_{hyp}(\gamma)$.
 - (b) Use Part (a) to show that φ is an isometry from (\mathbb{H}^2, d_{hvp}) to itself.
- 8. Let

$$\varphi(z) = \frac{az+b}{cz+d}$$
, with $a, b, c, d \in \mathbb{R}, ad-bc = 1$, and $a \neq 0$.

Set

$$\varphi_1(z) := z + \frac{b}{a}, \quad \varphi_2(z) := \frac{1}{z}, \quad \varphi_3(z) := \frac{1}{a^2}z, \quad \varphi_4(z) := z + \frac{c}{a}.$$

- (a) Which of $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ are horizontal translations, homotheties, or inversions?
- (b) Show that $\varphi = \varphi_2 \circ \varphi_4 \circ \varphi_3 \circ \varphi_2 \circ \varphi_1$.
- (c) Conclude that φ is an isometry of (\mathbb{H}^2, d_{hyp}) .

Optional Exercises

- 1. Let z = 2 i and w = 3 + 4i. Write the product zw and the quotient $\frac{z}{w}$ in the form a + ib, with $a, b \in \mathbb{R}$.
- 2. Find $r \in [0, \infty)$ and $\theta \in [0, 2\pi)$ so that $i 1 = r e^{i\theta}$.
- 3. Let *X* be the plane \mathbb{R}^2 , and let $d_1, d_2: X \times X \to \mathbb{R}$ be defined by

$$d_1((x, y), (x', y')) := |x - x'| + |y - y'|$$
 and $d_2((x, y), (x', y')) := \max\{|x - x'|, |y - y'|\}$

Show that (X, d_1) and (X, d_2) are metric spaces.

- 4. Textbook exercise 1.11.
- 5. Let $\varphi_{z_0} : \mathbb{C} \to \mathbb{C}$ be the rotation of angle θ around the fixed point $z_0 \in \mathbb{C}$. Express $\varphi(z)$ in terms of z, z_0 , and $e^{i\theta}$.
- 6. Describe in words the transformation $\psi : \mathbb{C} \to \mathbb{C}$ defined by $\psi(z) = -\overline{z}$.
- 7. Textbook exercise 2.6.
- 8. In the hyperbolic plane \mathbb{H}^2 , consider the two points P = i and Q = 4 + i. For u > 0, let $P_u = ui$, let $Q_u = 4 + ui$, and let γ_u be the curve going from P to Q that is made up of the vertical line segment $[P, P_u]$, followed by the horizontal line segment $[P_u, Q_u]$, and finally followed by the vertical segment $[Q_u, Q]$.
 - (a) Draw a picture of γ_u .
 - (b) Compute the hyperbolic length $\ell_{hyp}(\gamma_u)$.
 - (c) For which value of *u* is $\ell_{hyp}(\gamma_u)$ minimum?
 - (d) Show that $d_{\text{hyp}}(P,Q) \leq 2 \ln 2 + 2$.