Math 4803

February 28, 2024

LATELY

TODAY

Tessellations

Let X be the Euclidean plane, the hyperbolic plane, or the sphere.

A tessellation of X is a family of tiles Xn, NEN such that

(1) each tile is a <u>connected</u> <u>Polygon</u> in X;

(2) the tiles are pairwise isometric;

(3) the union of the tiles is X;

(4) for m≠n, Xm n Xn consists only of edges ; vertices of Xm, and these are shared with Xn.

(5) for every $P \in X$, there exists $\varepsilon > 0$ s.t. $\{n \in N \mid B_d(P, \varepsilon) \cap X_n \neq \emptyset\}$ is finite. (local finiteness)

Examples Farey tessellation of (Ht, dhyp)

A tessellation of (52, dsph)

Not technically a

The tiling group
We will build
tessellations from
Polygons with
edge gluings.

Consider a polygon X in the Euclidean plane, hyperbolic plane, or sphere, and suppose we have an edge gluing { Vi: Ei > Eit | 1 \le i \le 2k }. Each \ Pi extends to a(n) unique isometry of the full space such that 4:(x); X are on opposite sides of Pi(Ei). The tiling group of this edge gluing is then the subgroup of the full isometry group which is generated by these extensions, denoted [

The tessellation theorem

Thm. Let X be a Connected polygon in the Euclidean plane, hyperbolic plane, or sphere, and Suppose that an edge gluing [4: Ei > Eizz] has been specified. If

(1) for every vertex $P \in X$, $\sum_{Q \sim P} 4(Q) = \frac{2\pi}{n}$, where n > 0 is an integer which may depend on P; (2) the quotient metric space (X, d_X) is

then the family {Y(X) | YEF} is a tessellation of the Euclidean plane, hyperbolic plane, or sphere.

Completeness

Let (X,d) be a metric space.

The length of a sequence
P₁, P₂, ..., P_n, ... is defined to be $\frac{2}{N-1} d(P_n, P_{n+1})$

if this series converges, and so otherwise.

We say that (X,d) is complete if every Sequence of points in X which has finite length converges to a point Pacx.

HW: A metric space (X,d) is complete if and only if all of its Cauchy sequences converge.

After the midterm

- · Proof of the tessellation theorem
- · Analysis results (Completeness + Compactness)
- · Examples!