Math 4803 LAST TIME

February 26, 2024

TODAY

We'll now Construct a hyperbolic surface (X, dx) with the property that, for all P, QEX, 3 P~>Q s.t.

$$\ell_{\overline{d}_{x}}(\gamma) = \overline{d}_{x}(P,Q)$$

The polygon X is bounded by $E_1 = \{Re z = -1\}$, $E_2 = \{1z - \frac{1}{2}\} = \frac{1}{2}$, $E_3 = \{Re z = 1\}$, $\{E_4 = \{1z + \frac{1}{2}\} = \frac{1}{2}\}$. This is an "ideal square"—its vertices -1 0 1

aren't actually in H?. We define an edge gluing by

$$\varphi_3: E_3 \longrightarrow E_4$$

The quotient (X, dx) is homeomorphic to T-{*}.

Notice that, despite the puncture, (X, \overline{d}_X) is geodesically complete — for any P, $\overline{Q} \in X$, we can find $\overline{P} \xrightarrow{\sim} \overline{Q}$ S.t. $l_{hyp}(Y) = \overline{d}_X(P, \overline{Q})$. This indicates some strange

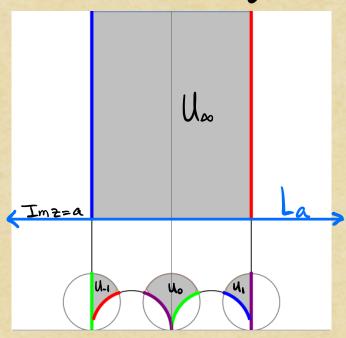
behavior near the puncture, so let's investigate.

Given a>1 we can consider

Um= {ZEX | Im = > a}.

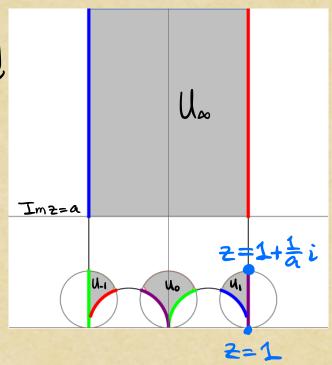
This will give one <u>Sectors</u> of a "disc" around the puncture. To determine the other sectors, consider the line

The other sectors will lie on the "puncture side" of 9, (La), 9, (La), or (4,043)(La)=(9,04,)(La).



Group work Check that 4, (La), 9, (La), and (9,04)(La) = (4,04)(La) are the (Euclidean) circles of radius 1/2a

respectively.



Recall: LFMs take circles flines to circles flines. So Ψ_1 (La) will be a circle tangent to $\Psi_1(\infty) = 1$. Now $\Psi_1^{-1}(2) = \frac{2z-1}{-z+1}$.

Group work, contid

So
$$\psi_{i}^{-1}(1 + \frac{1}{a}i) = \frac{2(1 + \frac{1}{a}i) - 1}{-(1 + \frac{1}{a}i) + 1}$$

$$= \frac{2a+2i-a}{-a-i+a} = \frac{a+2i}{-i}$$

$$=-2+ai$$

So Im
$$(4'(1+\frac{1}{\alpha}i))=\alpha$$
.

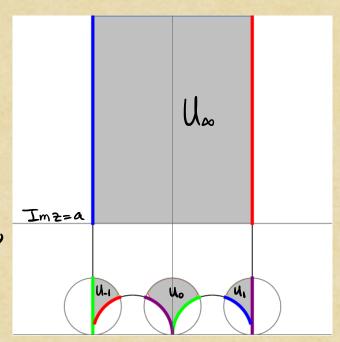
.. 4, (La) intersects the desired circle, and thus tist the desired circle.

The once-punctured torus

We can now define $U_{\infty}, U_{-1}, U_{0}, {}^{2}U_{1}$ as in the figure, let $U=U_{\infty}\cup U_{-1}\cup U_{0}\cup U_{1}$,

and consider the image U in X.

(We needed to think about ${}^{4}(Lal, {}^{4}(Lal), {$



This quotient \overline{u} is our "disk around the puncture" and it turns out to be isometric to an end of the pseudosphere Given a>1, we let Sa denote the surface obtained by revolving the curve $t\mapsto (t-\tanh t, \operatorname{sech} t)$, $\cosh^{-1}\left(\frac{a\pi}{3}\right)\leq t<\infty$ about the x-axis. Notice that $Sa\subset S$.

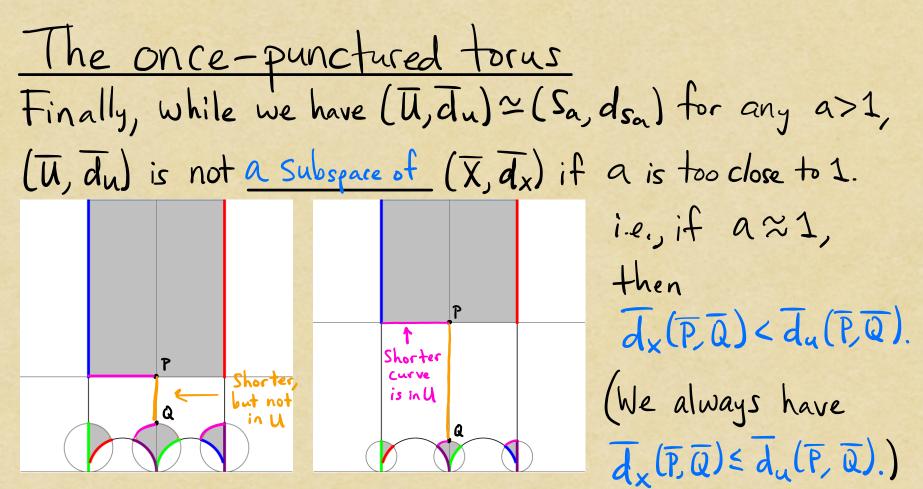
The once-punctured torus Given a > 1, we let S_a denote the surface obtained by revolving the curve $t \mapsto (t - tanh t, sech t)$, $cosh^{-1}\left(\frac{a\pi}{3}\right) \le t < \infty$ about the x-axis. Notice that $S_a \subset S$.

We let de denote the Euclidean path metricon Sa.

Prop. The metric spaces (U, du) & (Sa, dsa) are isometric.

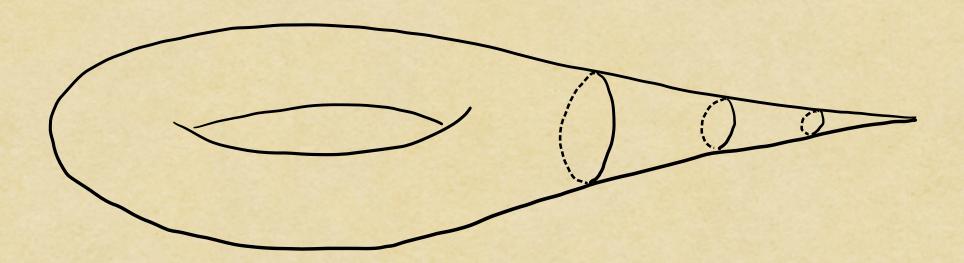
(Proof idea.) It's the same basic idea as in the hyperbolic cylinder case: write down an explicit map U -> Sa which preserves arclengths, then verify that it plays nicely with the quotient.

Messier because there are now more pieces.



We can fix this by choosing a sufficiently large. Prop. If $a \cdot \ln(a) > \frac{3}{2}$, then du = dx | u.

In formal corollary. $T^2 \{ * \}$ looks like a pseudosphere near its puncture.



Triangular pillow cases

Our last examples will have <u>cone singularities</u>,

and thus fail to be everywhere locally isometric to

one of (R2, denc), (H2, dnyp), { (S2, dsph).

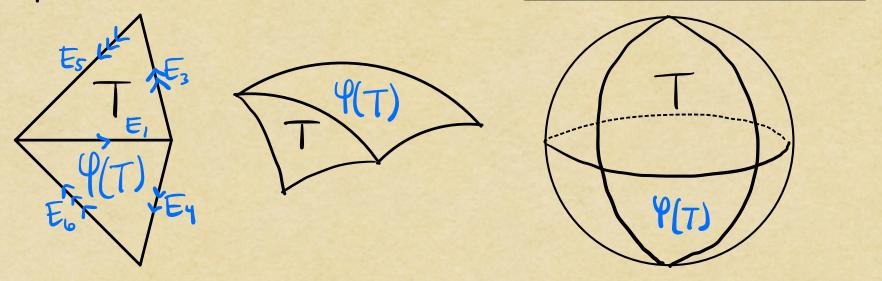
We first need:

Prop Consider d, B, Y & (O, TT).

- (P) If at \$1 + Y = TT, then there is a triangle T in (R) denc) with area 1 and angles d, p, Y.
- 2) If d+β+Y∠TT, then there is a triangle T in [Ht, dnyr) with angles α, β, Y.
- 3) If $\pi \subset \alpha + \beta + \gamma \subset \pi + 2 \min \{\alpha, \beta, \gamma\}$, then there is a triangle T in (s, d_{sph}) with angles α, β, γ .

Triangular pillow cases

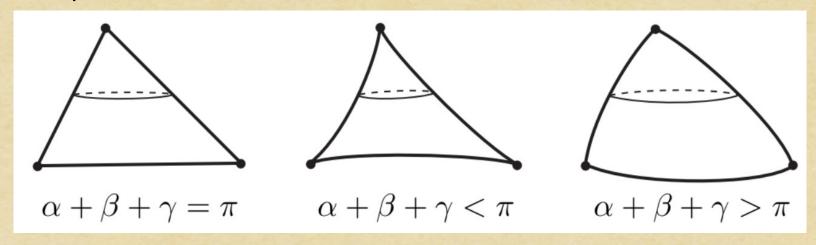
Given $d,\beta,\gamma\in(0,T)$ s.t. $d+\beta+\gamma<\pi+2min\{\alpha,\beta,\gamma\}$, let T be the triangle provided by the proposition, and let Y be the relevant version of "<u>reflection over a side</u>."



We then let X = TUP(T), treating T : P(T) as disjoint polygons. We can label the edges of $T : E_1, E_3, E_5$ and Set $E_2 = P(E_1)$, $E_4 = P(E_3)$, $E_6 = P(E_5)$. Then I automatically gives us an edge gluing.

Triangular pillowcases
The resulting quotient (X, dx) is necessarily a

metric space, but is not a Euclidean, hyperbolic,
or spherical surface.



Instead, (X, \overline{d}_X) is locally isometric to one of $(\mathbb{R}^2, \text{deucl})$, $(\mathbb{H}^2, \text{duyp})$, or (S^2, dsph) at all but three points, where there are <u>Cone angles</u> of $2\alpha, 2\beta, \frac{1}{2}$ 2γ 2π .