Math 4803 LAST TIME **February 19, 2024**

The surface of genus two as a hyperbolic
surface, the projective plane, ? Some
non-compact surfaces. TODAY

The surface of genus two Later we'll show that there is no Euclidean surface
homeomorphic to the surface of genus two (22). But we can explicitly construct a hyperbolic surface homeomorphic to \hat{z}_2 .

Idea: We want each triangle seen on the left to have angles $\frac{1}{2}, \frac{1}{8}, \frac{1}{8}$

Certainly we can't accomplish this
in Euclidean or spherical geometry, but we'll build a hyperbolic triangle of this type.

The surface of genus two
\n
$$
\frac{dy}{dx}
$$

\n $\frac{y=1}{\sin \frac{\pi}{8}} = \frac{y_{min}}{y_{min}}$
\n $\frac{y_{max}}{y_{min}}$
\n $\frac{1}{\sin \frac{\pi}{8}} = \frac{y_{min}}{y_{min}}$
\n $\frac{1}{\sin \frac{\pi}{8}} = \frac{y_{min}}{y_{min}}$
\n $\frac{1}{\sin \frac{\pi}{8}} = \frac{y_{min}}{y_{min}}$
\nWhen $y = 1$, $\alpha_y = \frac{\pi}{2} - \frac{\pi}{8} = \frac{3\pi}{8}$ and
\n $\lim_{y \to 1} \alpha_y = 0$.
\nBy the TVT, there must be some $y < 1$ s.t. $\alpha_y = \frac{\pi}{8}$.

The surface of genus two
\nWe're now ready to put a hyperbolic metric on
$$
\Sigma_2
$$
.
\nProposition. In (H², d_{hyp}) there is an octagon whose sides
\nall have the same length and whose angles are all $\frac{\pi}{4}$.
\n(Proof.) Throughout, T is the triangle constructed above.
\nWe let $T_1 = T$ and let $T_1 : H_1 \rightarrow H_1^*$
\nbe inversion across the complete
\ngeodesic $H_{\text{ML}} P_1$; P_2 . We then let
\n $T_2 = \{(T_1)$ and define $P_2 : H_1 \rightarrow H_1^*$
\nWe proceed inductively,
\n $= \frac{1}{2}$ and P_2 .
\n P_3 be inversion across the complete
\n $= \frac{1}{2}$ and P_4 .
\n P_5 be inversion across the complete
\n $= \frac{1}{2}$ and P_6 .
\n P_7 is the inversion across the complete
\n $= \frac{1}{2}$ and P_7 .
\n P_8 is *inversion across the complete*
\n $= \frac{1}{2}$ and P_9 .
\n P_9 is the inversion across the complete
\ndefined T_1, T_2, \ldots, T_{16} .

The surface of genus two Because 4P2= 78, the 16 triangles fit together to form a polygon. Because 9th, the triangles will fit together in pairs, giving us the desired \mathcal{T}_{16} T_1 \mathcal{T}_{15} $\, T_{2} \,$ octagon. We can now use the
edge gluing from before to get a hyperbolic metric

on 22.

The projective plane
\nIn S² we may consider
\nthe polygon
\n
$$
X = \{z \ge 0\}
$$
\n
\nNamely, we define edges
\n
$$
E_1 = \{z = 0 \mid x \ge 0\}
$$
\n
$$
E_2 = \{z = 0 \mid x \le 0\}
$$
\nWe can then define an edge gluing $\Psi_i : E_1 \rightarrow E_2$
\nThe vertices $\{V_1, V_2\} = E_1 \cap E_2$ have
\n
$$
4(V_1) = \pi \} \neq (v_2) = \pi
$$
\nSo this edge gluing determines a spherical surface
\nknown as the projective plane.

Guing Euclidean strips

\nIn IR,
$$
dec
$$
, the region between a pair of parallel lines is a non-compact polygon.

\nGiven any such strip X, we can apply an isometry to turn X into Eq. ϵ_1 and ϵ_2 and ϵ_3 and ϵ_4 and ϵ_5 .

\nFor some $w > 0$. Setting $E_1 = \{y = 0\}$, $E_2 = \{y = w\}$, we can consider the gluings $\varphi_1: E_1 \to E_2$ or $\varphi_1: E_1 \to E_2$ and $(x, 0) \mapsto (x, w)$.

\n(We make no claim of uniqueness at this stage.)

Guing hyperbolic strips

\nCase (D): Distinct endpoints

\nConsider the gluing

\n
$$
q: E_1 \rightarrow E_2
$$

\n $z \rightarrow az$

\nThis is an isometry, since if's a homothety

\nThe usual theorems then give us a hyperbolic surface

\nHowever, this hyperbolic cylinder does NOT have constant

\nwith. For each $0 \in (-\pi/2, \pi/2)$, let 16 be the closed curve in X given by $\gamma_0 = \{ \pm e^{i(\pi/2 - \theta)} | \pm \in [a, 1] \} \subseteq X$.

\nCheck: (1) $l_{n_{xy}}(\gamma_0) = -\ln(a)$ sec.

\n(2) $\overline{P} \in Y_0 \Rightarrow \overline{d}_x(\overline{P}) \rightarrow \ln(\sec \theta + \tan |\theta)$.

Gluing hyperbolic strips Check: (1) $\ell_{h_{3f}}(\gamma_e) = -h(a) \cdot \sec \theta$
(2) $\overline{P} \in \gamma_e \Rightarrow \overline{d}_x(\overline{P}, \gamma_e) = h(\sec \theta + \tan |\theta|).$ Upshot: $\{ \overline{P} \in \overline{X} \mid \overline{d}_x(\overline{P}, \gamma_o) = \overline{\mathcal{S}} \} = \gamma_{\text{arcsec}(\text{cosh } \mathcal{S})}$ $S_{0} \{ \overline{P} \in \overline{X} \mid \overline{d_{x}}(\overline{P}, \gamma_{0}) = \overline{S} \}$ is a pair of closed curves with hyperbolic length Lnyp (Varcsec(coshs)) $= -\ln(a)$ -Sec (arcsec (cosh $s)$) $= -\ln(a) \cdot \cosh \delta$ Since cosh $\delta = \frac{1}{2}(e^{\delta} + e^{-\delta})$, \overline{X} looks like a cylinder with exponentially -Not an isometric)
embedding. expanding width.

Gluing hyperbolic strips Conse (2): A shared endpoint Consider the gluing
 $\begin{array}{r} \n\text{Consider the gluing} \\ \n\downarrow \quad E_1 \longrightarrow E_2 \\ \n\downarrow \quad E_1 \longrightarrow E_1 \\ \n\downarrow \quad E_2 \longrightarrow E_1 \\ \n\end{array}$ $\frac{1}{\gamma_o}$ Once again, the quotient metric space (\overline{x}, d_x) is a hyperbolic cylinder. For all tell we may consider $\gamma_t = \{ \overline{z} \in \overline{X} | \text{Im} z = e^t \} \subset \overline{X}.$ Then $\ell_{hyp}(\gamma_t) = \int_0^1 \frac{1}{e^{\pm}} du = e^{-\pm}$ $\frac{1}{5} \equiv \epsilon \gamma_t \Rightarrow \overline{d}_x(\overline{z}, \gamma_0) = \int_{\frac{1}{5} \sqrt{20^2 + 1^2}}^{\frac{1}{5} \sqrt{20^2 + 1^2}} dy = \ln(y) \Big|_{\frac{1}{5} \sqrt{20 - 1^2}}$

= $\left| \ln (e^{t}) \right| = |t|$

Glying hyperbolic strips
Then
$$
l_{hyp}(\gamma_t) = e^{-t} \{ \overline{z} \in \gamma_t \Rightarrow \overline{d}_x(\overline{z}, \gamma_0) = |t|, s_0
$$

 $\{ \overline{z} \in \overline{X} | \overline{d}_x(\overline{z}, \gamma_0) = \delta \} = \gamma_t \cup \gamma_{-t}$ is a pair of closed
curves of hyperbolic length $e^{-t} \{ e^t, \text{respectively.}$

So
$$
\overline{X}
$$
 is a cylinder whose
width at one end grows
exponentially and at the other
end decays exponentially.

The (isometry type of) the image of
$$
\{2eX | \text{Im}z\} \leq 0
$$

in \overline{X} is known as a
Pseudosphere.

(Not an isometric)

Next Still more examples!