Math 4803 February 12, 2024 LAST TIME Euclidean, hyperbolic, and spherical
Surfaces as quotients of polygons Key technical requirement: good angle sums.

TODAY Several Euclidean examples, plus
the defin of <u>homeomorphism</u>

A 10000	from a rectangle
Consider the Euclidean rectangle	5
$X_1 = [a, b] \times [c, d] \le (\mathbb{R}, d_{enc})$	5
The decomposition shown determine a sequence	6
the equation \mathbb{R}^1	7
the equation \mathbb{R}^1	8
\mathbb{R}^1	9
\mathbb{R}^1	10
\mathbb{R}^1	10
\mathbb{R}^1	10
$(\mathbb{R}, c) \mapsto (x, d)$	10
$(\mathbb{R}, c) \mapsto (x, d)$	10
10	10
11	10
12	10
13	11
14	10
15	10
16	11
17	10
18	11
19	11
10	11
11	10
12	11
13	11
14	11
15	

Homeomorphisms
\nA homeomorphism between metric spaces (X,d)
\nand (X',d') is a bijection
$$
\varphi : X \rightarrow X' \text{ s.t. } \text{both}
$$

\n $\frac{\varphi}{\frac{1}{2}} \varphi^T$ are continuous. i.e. $\forall P \in X, P' \in X' \text{ s.t. } \text{both}$
\n $\frac{\varphi}{\frac{1}{2}} \varphi^T$ are continuous. i.e. $\forall P \in X, P' \in X' \text{ s.t. } \text{both}$
\n $\frac{\varphi}{\frac{1}{2}} \varphi^T$ are $\frac{1}{2} \varphi^T$ is a $\frac{1}{2} \varphi^T$ (R(P), P(Q)) \leq
\n $\frac{1}{2} \varphi^T$ is $\frac{1}{2} \varphi^T$ (R(P), P'(Q')) \leq
\nNote: iSometry \Rightarrow homeomorphisms
\nWe'll typically (after today) be pretty informal about
\nhomeomorphisms, thinking of them as' bijections which
\nmay sketch the meets. "The key is that
\nthey preserve the notions of limits and

 \mathbf{Z}

It really was a torus

\nThe 2-dimensional torus, denoted T, is the surface in
$$
\mathbb{R}^3
$$
 obtained by revolving about the 2-axis, the circle $(x-R)^2 + z^2 = r^2$

\nIn the xz-plane, where R > r.

Check: Different choices of R>r give homeomorphic
Subsets of
$$
\mathbb{R}^3
$$
.

Lemma Let
$$
(\overline{x}_1, \overline{d}_x)
$$
 be the quotient metric space obtained from $X_1 = [a, b] \times [c, d]$ by gluing together opposite edges by
Euclidean trans lations. Then $(\overline{x}_1, \overline{d}_x)$ is homeomorphic to $(T^2, d_{ew}|_{T^2 \times T^2})$.

<u>It really was a torus</u> (Proof) First, the precise choices of ba i d>c are irrelevant: Check: $[a,b] \times [c,d] \longrightarrow [-\pi,\pi] \times [-\pi,\pi]$
 $(x,y) \mapsto (\frac{2\pi}{b-a}(x-\frac{a+b}{2}), \frac{2\pi}{d-c}(y-\frac{c+d}{2}))$ is a homeomorphism. So we'll assume that $X_i = [-\pi, \pi] \times [-\pi, \pi]$. Now consider $\rho: [-\pi, \pi] \times [-\pi, \pi] \longrightarrow T^2$ defined by $\rho(\theta,\phi) = (R + r \cos \phi) \cos \theta$, $(R + r \cos \phi) \sin \theta$, $rsin \phi$). Notice that $\rho(\theta,\phi) = \rho(\theta',\phi')$ if $f(\theta',\phi) - (\theta',\phi')$, so
we can define a bijection $\overline{\rho}: X_1 \longrightarrow T^2$ by $\overline{\rho}(\overline{P}) := \rho(P)$ for every $\overline{P} \in X_1$.

It really was a torus		
Trig/calculus: $p: X_1 \rightarrow T^2$ is continuous.		
Each line we showed that $\overline{d}(\overline{p}, \overline{Q}) \leq d(\overline{P}, Q)$ for any partition of (X,d) . This can be used to check that \overline{p} is also continuous.		
Finally, we need to verify that \overline{p}^{-1} is also continuous.		
Well verify continuity at	$Q_0 := \overline{p}(\overline{I} + \overline{I} + \overline{I} + \overline{I})$	= (-R+c, 0, 0).
For $Q = (X, y, z) \in T^2$ near Q_0 ,		
$\overline{p}^{-1}(X, y, z)$	$\overline{p}^{-1}(X, y, z)$	
$\overline{r}^{-1} = \overline{a} \cos(\overline{z}), z > 0$	$\overline{p}^{-1}(X, y, z)$	
$\overline{r} = 1$	$\overline{a} = 0$	$\overline{f} = 1$
$\overline{r} = -a \cosh(\overline{z}), z > 0$	$\overline{p}^{-1}(X, y, z)$	
$\overline{r} = -a \cosh(\overline{z}), z < 0$	$\overline{r} = 1$	
or $1 - a \cosh(\overline{z}), z > 0$	$\overline{r} = 1$	
$\overline{r} = -a \cosh(\overline{z}), z < 0$	$\overline{r} = 1$	
or $1 - a \cosh(\overline{z}), a > 0$	$\overline{r} = 1$	

1 + really was a torus	No bar!
By the continuity of arcsin: [-1,1] \rightarrow [-T/2,T/2], p ⁻¹ will	
Send points close to Q ₀ to points near one of	
$(-\pi, \pi)$, $(-\pi, \pi)$, $(\pi, -\pi)$, or (π, π) .	
11 follows that $\overline{p^{-1}}:T^2 \rightarrow X_1$ will send points near	
Q ₀ + points near	
Q ₀ + points near	
Q ₀ .	
Points other than Q ₀ are similar, but with fewer cases.	
Q ₀ .	
(π, π)	
(π, π)	

Tori from parallelograms
\nLemma Let
$$
(\overline{x}_2, \overline{d}_{x_2})
$$
 be the quotient
\nmetric space obtained from a parallelogram
\n X_2 in (\mathbb{R}, dew) by gluing together opposite
\nedges by Euclidean trans lations. Then
\n $(\overline{X}_2, \overline{d}_{x_2})$ is homeomorphisms. Then
\n $(\overline{X}_2, \overline{d}_{x_2})$ is homeomorphisms. Then
\n $(\mathbb{R} \cdot \circ \circ \mathbb{R})$ On $+ \mathbb{W}$ 3 your'll construct a homeomorphism
\n $\mathbb{P} \cdot \chi_2 \rightarrow \chi_1$, where $X_1 = [a, b] \times [c, d]$. Moreover,
\n $\mathbb{P} \sim \mathbb{Q}$ iff $\mathbb{P}(P) \sim \mathbb{P}(Q)$, $\mathbb{H} \rightarrow \mathbb{Q} \in X_2$,
\nleading to a bijection $\overline{\Psi} : \overline{X}_2 \longrightarrow \overline{X_1}$. Finally, we
\n $\text{Can Check that } \overline{\Psi}$ is a homeomorphism meaning
\n $\text{that } (\overline{X}_2, \overline{d}_{X_2}) \simeq (\overline{X}_1, \overline{d}_{X_2}) \simeq (\overline{T}^2, \text{deuc}|_{T^2 \times T^2})$.

Klein bottles By using a different edge gluing
on the rectangle $[a,b] \times [c,d]$, we
obtain a different Euclidean surface. E_4 Let E_1, E_2, E_3, E_4 be as before $\frac{1}{a}$ and Consider $\varphi_1 : E_1 \to E_2 : \varphi_3 : E_3 \to E_4$
 $(x, c) \mapsto (x, d)$ $(a, g) \mapsto (b, d - (g - c))$ These are both isometries, and $(a, c) = \{(a, c), (a, d), (b, d), (b, c)\}.$ Since $4(a, c) + 4(a, d) + 4(b, d) + 4(b, c) = 2\pi$ the result is a Euclidean surface.

Klein bottles

