Math 4441

September 28, 2022

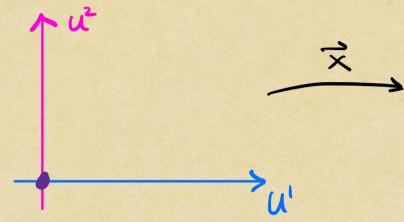
LAST TIME

As with curves, surfaces are <u>functions</u>, Considered up to <u>reparametrization</u>

TODAY Our first geometric invariants.

Curves Surfaces $(a,b) \rightarrow \mathbb{R}^3$ $U \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3$, with U open reparam. Coordinate transformations tangent line tangent plane

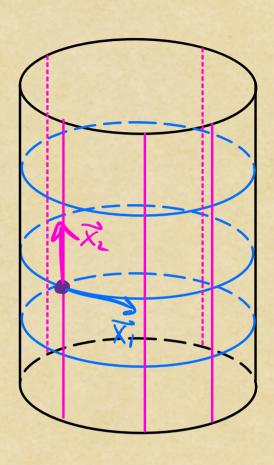
Notation



Given a simple surface $X:U \to \mathbb{R}^3$

we have Vectors

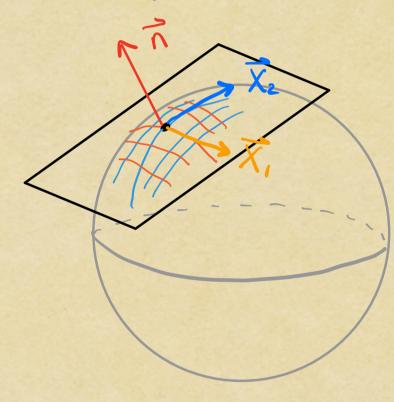
$$\overrightarrow{X}_1 := \frac{\partial \overrightarrow{X}}{\partial u^1} \quad \overrightarrow{X}_2 := \frac{\partial \overrightarrow{X}}{\partial u^2}$$



These are the columns of dx.

Reparametrization If f: u - U is a Coordinate transformation and $\overline{X} := \overline{X} \circ f$ then the chain rule Says Writing out entries, $\begin{pmatrix} \frac{1}{X_1} & \frac{1}{X_2} \\ \frac{1}{X_1} & \frac{1}{X_2} \end{pmatrix} = \begin{pmatrix} \frac{1}{X_1} & \frac{1}{X_2} \\ \frac{1}{X_1} & \frac{1}{X_2} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial u_1}{\partial u_1} & \frac{\partial u_2}{\partial u_2} \\ \frac{\partial u_1}{\partial u_1} & \frac{\partial u_2}{\partial u_2} \end{pmatrix}$ In particular, $\overrightarrow{X}_{j} = \underbrace{\frac{\partial f^{i}}{\partial u^{i}}}_{i=1} \overrightarrow{X}_{i}.$

The vectors \vec{X}_1 and \vec{X}_2 ought to be tangent to our surface 5.



* It's tempting to take the span of these Vectors. Not today. We want to use them to define a <u>tangent plane</u> to 5 at $p = \bar{x}(u,v)$.

Remember that a plane in R³ is determined by a Point plus a normal vector.

Let $\vec{X}: U \to \mathbb{R}^3$ be a simple surface. The unit normal vector to \vec{X} is the function $\vec{n}: U \to S^2 \subset \mathbb{R}^3$ defined by $\vec{X}_1(u',u^2) \times \vec{X}_2(u',u^2)$ $\vec{n}(u',u^2):= |\vec{X}_1(u',u^2) \times \vec{X}_2(u',u^2)|$

With \vec{x} and \vec{n} as above, let $p = \vec{x}(a,b)$, for some $(a,b) \in U$. The <u>tangent plane</u> $t_p \vec{x}$ to $\vec{x}(u)$ at p is <u>the plane through p which is L to \vec{n} .</u>

(temporary notation)

Proposition. The tangent plane is a geometric invariant of surfaces.

(Proof.) We need to check that tpx unchanged when we apply a <u>coordinate</u> transformation.

Let $\tilde{X} = \overline{X} \cdot f$. It will be enough to Show that $\tilde{n} = \pm \tilde{n}$.

In fact, we don't need to scale down to unit length — just check that $\overline{\chi}_1 \times \overline{\chi}_2 \parallel \overline{\chi}_1 \times \overline{\chi}_2$

But we previously computed that
$$\overrightarrow{X}_{1} = \underbrace{\sum_{i=1}^{2} \frac{\partial f^{i}}{\partial u^{i}} \overrightarrow{X}_{i}}_{X_{i}} + \underbrace{\overrightarrow{X}_{2}}_{X_{2}} = \underbrace{\sum_{j=1}^{2} \frac{\partial f^{j}}{\partial u^{2}} \overrightarrow{X}_{j}}_{X_{j}}$$

$$= \underbrace{\frac{\partial f^{j}}{\partial u^{j}} \cdot \frac{\partial f^{z}}{\partial u^{z}} \cdot \overrightarrow{X}_{i} \times \overrightarrow{X}_{2}}_{= \underbrace{\frac{\partial f^{j}}{\partial u^{z}} \cdot \overrightarrow{X}_{j}}_{X_{i}} \times \overrightarrow{X}_{2}}_{= \underbrace{\frac{\partial f^{j}}{\partial u^{j}} \cdot \frac{\partial f^{z}}{\partial u^{z}}}_{= \underbrace{\frac{\partial f^{j}}{\partial u^{z}} \cdot \frac{\partial f^{z}}{\partial u^{z}}}_{= \underbrace{\frac{\partial f^{j}}{\partial u^{z}}}_{= \underbrace{\frac{\partial f^{j}}{\partial u^{z}} \cdot \frac{\partial f^{z}}{\partial u^{z}}}_{= \underbrace{\frac{\partial f^{j}}{\partial u^{z}} \cdot \frac{\partial f^{z}$$

Since f is a coordinate transformation, det df #0, so we win.

Note: Unlike arclength parametrizations of curves, we don't have a naturally preferred function for surfaces.

So we have to do more things by hand.