Math 4441

October 31, 2022

LAST TIME

Given a point P and a unit tangent vector \vec{u} , there exists a unique geodesic \vec{d} , defined on $(-\varepsilon, \varepsilon)$, for some $\varepsilon>0$, such that $\vec{d}(0) = \vec{P}$ and $\vec{d}'(0) = \vec{u}$. Why? Picard's theorem

TODAY

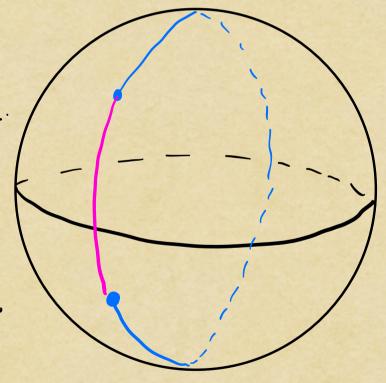
Geodesics do what we want them to do: they locally minimize arclength.

Recall our définition of geodesics:

Def A geodesic is a unit-speed surface curve whose geodesic curvature is everywhere zero.

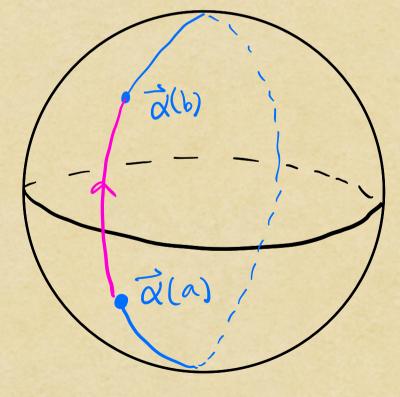
Geodesics are NOT always shortest paths

But shortest paths
are always geodesics!



Thm If $\vec{\alpha} = \vec{X} \cdot \vec{\alpha} \vec{u}$ is a unit-speed Surface curve which minimizes arc length between points $\vec{\alpha}(a) \neq \vec{\alpha}(b)$, then $K_g(s) = 0$, for all $s \in (a,b)$.

Kie., any other surface curve connecting $\vec{\alpha}$ (a) to $\vec{\alpha}$ (b) will have greater arclength by two these points



We'll break the proof into two steps:

(1) prove the <u>planar</u> version (using <u>calculus</u> of <u>variations</u>);

2) figure out how to recreate the argument on a surface.

Note: Step (2) isn't *quite* as easy as just "pushing everything upstairs."

The planar Version

We want to show that if $\vec{\alpha}$ minimizes arclength between $\vec{\alpha}(a)$ \(\vec{\pi}(a))\(\vec{\pi}(b)\), then $0=K_g(s)=k(s)$ for all $s\in(a,b)$.

 $\vec{a}(b)$

How might we get started?

i.e., deform the path

to be come shorter

An observation If k>0 or k<0, then a shorter Path lies on the same side as 元(b)

This leads to our strategy: Continuously deform $\vec{\alpha}$ to become closer to the Straight line For any $t \in \mathbb{R}$, define a Curve $\overrightarrow{a}_{t}:(a,b) \longrightarrow \mathbb{R}^{2}$ by $\vec{\alpha}_{t}(s) := \vec{\alpha}(s) + tk(s) \cdot \vec{\tau}(s)$ Note: $\overrightarrow{Q}_{o} = \overrightarrow{Q}$.

2(b) Since we assumed that dis length-minimizing, the function $L(t) := l(\vec{\alpha}_t) = \int ||\vec{\alpha}_t'(s)|| ds$ has a minimum at t=0 Upshot: L'(0) = 0 (calculus of variations)

Let's investigate L'(t).

L(t) =
$$\int_{a}^{b} ||\vec{\alpha}_{t}'(s)|| ds = \int_{a}^{b} (\frac{\partial}{\partial s}\vec{\alpha}_{t}, \frac{\partial}{\partial s}\vec{\alpha}_{t}) ds$$

$$= \int_{a}^{b} (|(\frac{\partial}{\partial s}\vec{\alpha}_{t}, \frac{\partial}{\partial s}\vec{\alpha}_{t})|) ds$$

$$= \int_{a}^{b} (|(\frac{\partial}{\partial s}\vec{\alpha}_{t}, \frac{\partial}{\partial s}\vec{\alpha}_{t})|) ds$$

$$= \int_{a}^{b} (|(\frac{\partial}{\partial s}\vec{\alpha}_{t}, \frac{\partial}{\partial s}\vec{\alpha}_{t})|) ds$$

L'(t) =
$$\int_{a}^{b} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right) ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$= \int_{a}^{b} \frac{\partial}{\partial s} \vec{\alpha}_{t} ds$$

$$=$$

So
$$L'(0) = \int_{a}^{b} \left(\frac{\partial^{2}}{\partial s \partial t} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right) ds$$

Time for integration = undoing the

by parts product rule

$$\frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right) = \left(\frac{\partial^{2}}{\partial s \partial t} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right)$$

$$+ \left(\frac{\partial}{\partial t} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right) = \frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right)$$

$$\cdot \cdot \left(\frac{\partial^{2}}{\partial s \partial t} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right) = \frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \vec{\alpha}_{t}, \frac{\partial}{\partial s} \vec{\alpha}_{t} \right)$$

$$- \left(\frac{\partial}{\partial t} \vec{\alpha}_{t}, \frac{\partial^{2}}{\partial s} \vec{\alpha}_{t} \right)$$

Finally, recall our definition of
$$\overrightarrow{Q}_t$$
:

 $\overrightarrow{Q}_t = \overrightarrow{Q}_t + t \cdot k \cdot T\overrightarrow{T}$

So $\frac{\partial}{\partial t} \overrightarrow{Q}_t = k \cdot T\overrightarrow{T}$
 $\therefore (\frac{\partial}{\partial t} \overrightarrow{Q}_t, \frac{\partial}{\partial s} \overrightarrow{Q}_t)|_{t=0} = \langle k \cdot T\overrightarrow{T}, \overrightarrow{Q}_0' \rangle = 0$

Then

 $L'(0) = \int_a^b - \langle \frac{\partial}{\partial t} \overrightarrow{Q}_t, \frac{\partial^2}{\partial s^2} \overrightarrow{Q}_t \rangle|_{t=0} ds$
 $= \int_a^b - \langle k \cdot T\overrightarrow{T}, \overrightarrow{Q}'' \rangle ds = \int_a^b - k^2 ds$
 $= \int_a^b - \langle k \cdot T\overrightarrow{T}, \overrightarrow{Q}'' \rangle ds = \int_a^b - k^2 ds$

So $L'(0) = \int_{-\infty}^{b} (k(s))^2 ds$. Since à is arclength-minimizing, L'(0) = 0. At the Same time, (k(s))² ≥ 0. So we must have k(s) = 0, for all $s \in (a,b)$. Since le=Kg for planar curves, this means that α is a geodesic!

Recap. The key idea was that if $K_g(s) \neq 0$ for some $S \in (a,b)$, then we could by pushing towards (TT). We assumed à to be the Shortest, built the family $\overline{\alpha}_{t} := \overline{\alpha} + t \overline{\alpha} \overline{\tau} , \overline{\gamma}$ and used IBP to find that $K_g \equiv 0$.