Math 4441 August 22, 2022

GOALS

- 1) Define regular, parametrized curves.
- 2) See some examples.
- 3 Define reparametrization.
- 4) Identify the goal: geometric invariants.

Nice functions We call a function $f:\mathbb{R}^m \to \mathbb{R}^n$ a C^k <u>function</u>, for some $k \ge 1$, if f has Continuous derivatives of all orders up to k e.g., $f: \mathbb{R}^2 \to \mathbb{R}$ is C if f, f_X , f_Y fxx, fxy, fxx, f fyy are all cts Notation: $f \in C^k(\mathbb{R}^m, \mathbb{R}^n)$

Curves as functions

A parametrized curve in \mathbb{R}^3 is a \mathbb{C}^3 function $\vec{\alpha}: (a, b) \to \mathbb{R}^3$.

We say that à is regular if \(\frac{\tau'(t) \dot 0}{\tau} \)

for all $t \in (a,b)$.

Notation:
$$\overrightarrow{\alpha}(t) = \begin{pmatrix} \chi(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} \chi(t), y(t), z(t) \end{pmatrix}$$

$$\Rightarrow \overrightarrow{\alpha}'(t) = \frac{d\overrightarrow{\alpha}}{dt} = \begin{pmatrix} \chi'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = \begin{pmatrix} \chi'(t), z'(t) \\ z'(t) \end{pmatrix}$$

Remarks / Vocabulary

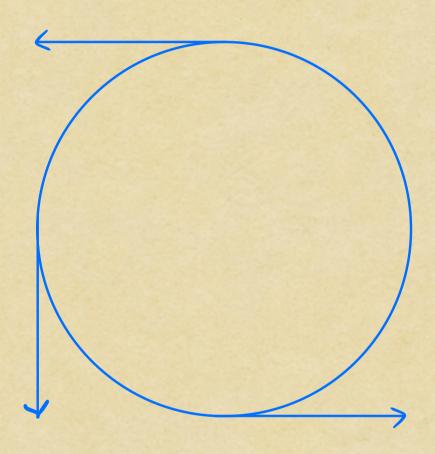
- (1) We'll often refer to the independent variable t as <u>time</u>.
- 2) The derivative d'(t) is called the <u>velocity</u> <u>vector</u> of a.

Warning: Need to choose a value of t to get a vector!

3) The speed of à is given by [à'lt].

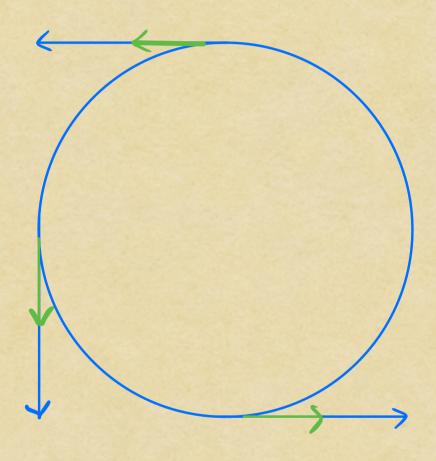
Example 1 Describe the curve $\vec{\alpha}:(0,2\pi)\to\mathbb{R}$ defined by $\vec{\alpha}(t) := (2\cos t, 2\sin t, 0).$ Plot à (t) at t= T/2, T, 3 T/2. Circle of radius 2 centered @ origin, in Xy-plane $\vec{\alpha}'(t) = (-2 \sin t, 2 \cos t, 0)$ $\vec{a}'(T/2) = (-2, 0, 0)$ $\vec{a}'(\pi) = (0, -2, 0)$ 元(3元)=(2,0,0)

Example 1, cont'd



Example 2 Describe the curve $\beta:(0,6\pi)\longrightarrow\mathbb{R}^3$ defined by $\beta(u) := (2\cos(\frac{u}{3}), 2\sin(\frac{u}{3}), 0)$. Plot B'(u) at u = 3 T/2, 3 TT, 9 T/2. Circle of radius 2 centered @ origin, in Xy-plane $\overline{\beta}(u) = \left(-\frac{2}{3}\sin\left(\frac{\pi}{3}\right), \frac{2}{3}\cos\left(\frac{\pi}{3}\right), 0\right)$ $\frac{7^{3}(3\pi)}{3^{3}} = (-\frac{2}{3}, 0, 0)$ $\frac{7^{3}(3\pi)}{3^{3}} = (0, -\frac{2}{3}, 0)$ $\overline{\beta}'(911/2) = (\frac{2}{3}, 0, 0)$

Example 2, contid



Didn't make it very far :

Curves as functions

The preceding examples illustrate an important point: while treating curves as functions is computationally helpful, we want to study the images of these functions.

We need a way to treat à and B as the same curve. Reparametrizations

A (1-dimensional) Ck reparametrization is a bijective function

g:(c,d) -> (a,b)

such that g i g are both C functions

Note: For curves we need $k \ge 3$ We'll usually take $k = \infty$ Example 3 Consider $\vec{\alpha}: (0,2\pi) \longrightarrow \mathbb{R}^3$ t > (2 cost, 2 sint, 0) $\vec{\beta}:(0,6\pi)\longrightarrow \mathbb{R}^3$ $u \longmapsto \left(2\cos\left(\frac{4}{3}\right), 2\sin\left(\frac{4}{3}\right), 0\right)$ from before. Find a reparametrization g:(c,d) -> (a,b) Such that $\vec{\beta} = \vec{\alpha} \cdot g$. $g:(0,6\pi)\longrightarrow(0,2\pi)$ U 1-> 1/3 $(d \circ g)(u) = \overrightarrow{a}(g(u)) = \overrightarrow{a}(\frac{4}{3})$ a, but replace t with 1/3

By design, reparametrizing does not change the image of a curve.

Proposition. Let $\vec{\alpha}:(a,b)\to\mathbb{R}^3$ be a regular curve, $g:(c,d)\to(a,b)$ a reparametrization. Then $\vec{\beta}:=\vec{\alpha}\circ g:(c,d)\to\mathbb{R}^3$ is a regular curve, and $im(\vec{\alpha})=im(\vec{\beta})$.

In the above circumstance, we say that $\vec{\beta}$ is a reparametrization of \vec{d}

(Proof.) We'll have im $(\vec{\beta}) = im(\vec{a})$ because g is <u>Surjective</u>.

We need to check that $\vec{\beta}$ is regular.

Let's use the variables te(a,b) {ue(c,d).

Then

$$\frac{d\vec{\beta}}{du} = \frac{d}{du}(\vec{a} \circ g) = \frac{d\vec{a}}{dt}(g(u)) \cdot \frac{dg}{du},$$

and we need de to. By assumption, de to

so it's enough to check that $\frac{dq}{du} \neq 0$.

For this, we can use the chain rule again.

For any ue (c,d), we have

$$(g^{-1} \circ g)(u) = \frac{u}{du} \Rightarrow \frac{1}{du}(g^{-1} \circ g) = 1$$

On the other hand,
$$1 = \frac{d}{du} \left(\frac{1}{9} \cdot 9 \right) = \frac{d9}{dt} \cdot \frac{d9}{du},$$

so $\frac{dg}{du} \neq 0$, as desired.

reparametrizations of chain rule

Here's a useful result that we won't prove.

Theorem. If $\vec{\alpha}$ and $\vec{\beta}$ are injective, regular, parametrized curves with im $(\vec{\alpha}) = \text{im}(\vec{\beta})$, then there is a reparametrization g such that $\vec{\beta} = \vec{\alpha} \circ g$.

Idea: Set $g = \vec{Q} \circ \vec{\beta}$.

Geometric invariants

Our first goal in this course is to study images of curves. The preceding results tell us that this means studying <u>Parametrized curves</u>, up to <u>reparametrization</u>.

A geometric invariant of a regular, parametrized curve à is any mathematical quantity which doesn't change when we replace à with a reparametrization à 09.