
Math 4441 Activities Activity 8

8 The Foucault Pendulum

Goals

By the end of this activity, we should be able to do the following.

1. Characterize parallel vector fields along circles of latitude on a sphere.
2. Compute the covariant derivative of a vector field along a circle of latitude.
3. Determine the holonomy experienced by the Foucault pendulum after one revolution of the sphere.

Acknowledgment: Today’s activity draws heavily from Geometry and the Foucault Pendulum, by John Oprea.

Many science museums throughout the world house a Foucault pendulum, so maybe you’ve encountered
one before. Here’s a video of the Foucault pendulum in the rotunda of Griffith Observatory in Los Angeles:

https://upload.wikimedia.org/wikipedia/commons/1/12/Foucault_pendulum_in_the_
rotunda_in_Griffith_Observatory_in_July_2022.webm

Many museums use their Foucault pendulum as timekeeping devices, but Foucault’s original intention was
to give a basic demonstration of the Earth’s rotation. In today’s activity, we’ll develop some of the geometry
needed to fully appreciate Foucault’s invention — making us the most fun friends to have at the museum!

The mathematical notion we need to develop is that of parallel transport along a surface curve. We won’t
work this out in full generality today, but will focus on a particular curve on a particular surface. Namely, we
will consider a circle of latitude on a sphere of radius R> 0. Throughout the activity we’ll consider the simple
surface

~x(u1, u2) := (R cos u1 cos u2, R sin u1 cos u2, R sin u2), −π < u1 < π, −π/2< u2 < π/2.

Notice that this is slightly different from the usual spherical coordinates, where u2 measures the angle from
the north pole. Here, u2 = 0 corresponds to the Equator, as in the usual latitude/longitude coordinates on
Earth. The first thing we want from ~x today is an orthonormal basis for Tp ~x , for each point p of ~x .

Exercise 8.1. Recall that {~x1(u1, u2), ~x2(u1, u2)} gives a basis for T~x(u1,u2)~x . The purpose of this problem is to
produce an orthonormal basis.

(a) Check that ~x1(u1, u2) and ~x2(u1, u2) are perpendicular, for all (u1, u2). Thus we can obtain an orthonormal
basis by scaling ~x1 and ~x2 to have unit length.

(b) For i = 1,2, let ~Ei := ~x i/‖~x i‖. Check that

~E1(u
1, u2) = (− sin u1, cos u1, 0) and ~E2(u

1, u2) = (− cos u1 sin u2,− sin u1 sin u2, cos u2)

for all (u1, u2).

(c) Check that the surface normal vector ~n is given by

~n(u1, u2) = (cos u1 cos u2, sin u1 cos u2, sin u2).

Hint: We defined ~n to be a scaled version of ~x1 × ~x2. How should this relate to ~E1 × ~E2?

Over the course of 24 hours, we can think of a fixed point on Earth (such as the location of a science
museum) as tracing out a closed curve on a sphere. Imagine placing your finger over your hometown on
a globe. As the globe makes one revolution, your finger will trace out a circle of latitude, even though its
position over your hometown doesn’t change. We’ll need a parametrization of this curve.

Exercise 8.2. Fix a value −π/2< φ0 < π/2 and present the circle with latitude φ0 as a surface curve. That is,
identify a curve ~αU in (−π,π)× (−π/2,π/2) with the property that ~α(t) := (~x ◦ ~αU)(t) parametrizes the circle
with latitude φ0.
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Figure 8.1: A Foucault pendulum at Griffith Observatory, Los
Angeles. Source: Wikimedia Commons

Now we’re ready to think about parallel transport along a circle of latitude should mean. With ~α the
surface curve you identified in Exercise 8.2, suppose we’re standing at the point ~α(t0) and have a tangent
vector ~V0 to ~x that we like a lot. As we begin to move along ~α, we want to carry ~V0 with us without change.
Notice that we can’t do this naively: when t 6= t0, we don’t expect ~V0 to be parallel to ~x at ~α(t). This leads to
an important question.

Exercise 8.3. Let ~x and ~α be as above. We want to construct a function ~V (t) which produces a vector tangent
to ~x at ~α(t), for each t ∈ (−π,π). What should it mean to say that ~V doesn’t change as we move along ~α?
Note: Write down an answer to this in complete sentences before moving on. You won’t get any points for being
right, but you will get points for giving a thoughtful hypothesis or explanation.

Respond to Exercise 8.3 before proceeding.

Here’s a very natural approach to Exercise 8.3: since we’re asking ~V (t) not to change as we move along ~α,
we’re really asking ~V (t) not to change as we vary t. So maybe we just want to demand that ~V ′(t) 6= ~0. The
wrinkle is that ~V ′(t) isn’t necessarily tangent to ~x — it’s a vector in R3. Since we’re thinking of ~α as a curve
on ~x , we can’t see vectors that are perpendicular to ~x . Instead of asking ~V ′(t) to be ~0, we just ask it to be
perpendicular to T~α(t)~x .

Definition. Let ~α be the circle of latitude on ~x identified above. Call a vector field ~V (t) parallel along ~α
if the derivative ~V ′(t) is perpendicular to the tangent plane T~α(t)~x , for all t ∈ (−π,π).

Remark.

1. There’s an analogy to be made with normal and geodesic curvatures. Just as κn and κg measure the
curvature of ~α in directions normal and tangent to ~x , respectively, the projection of ~V ′(t) onto T~α(t)~x
measures the change in ~V (t) as it would be observed by an inhabitant of ~x .

2. It is very important to observe that the given definition of parallelism is specific to this curve and surface.
In order to define parallel transport along any surface curve, we’ll need to use the covariant derivative,

2

https://commons.wikimedia.org/wiki/File:FOUCAULT_Pendulum_@_Griffith_Observatory_(5968573417).jpg


Math 4441 Activities Activity 8

which is a sort of directional derivative on surfaces. The definition given above only works because ~α is a
coordinate curve of constant velocity.

Notice that we already have two vector fields along ~α— ~E1 and ~E2. Let’s decide whether or not these are
parallel.

Exercise 8.4. Let ~α= ~x ◦ ~αU be as above, and consider ~E1(t) = ~E1(~αU(t)) and ~E2(t) = ~E2(~αU(t)). Show that

~E′1(t) = sinφ0 ~E2(t)− cosφ0 ~n(t) and ~E′2(t) = − sinφ0 ~E1(t).

For which values of φ0 are the vector fields ~E1(t) and ~E2(t) parallel? Give an intuitive explanation of why
these vector fields are not parallel for most values of φ0.
Hint: Think about very cold circles of latitude.

So parallel transport along a surface curve can behave in surprising ways — the second equation above
tells us that a vector pointing north will not remain pointing north as we parallel transport, for most values of
φ0. One reality check, though, is that parallel transport preserves magnitudes.

Exercise 8.5. Let ~α= ~x ◦ ~αU be as above, and suppose ~V (t) is parallel along ~α. Show that ‖~V (t)‖ is constant.
Hint: Since ~V ′(t) is perpendicular to T~α(t)~x and ~V (t) is a tangent vector, 〈~V ′(t), ~V (t)〉 ≡ 0.

Now we can start to use the orthonormal basis {~E1(t), ~E2(t)} for T~α(t)~x considered above. Exercise 8.5
allows us to write

~V (t) = L cosθ (t) ~E1(t) + L sinθ (t) ~E2(t), (8.1)
for some function θ (t), where L is the constant magnitude of ~V (t). Moreover, we can use your work from
Exercise 8.4 to compute ~V ′(t) in terms of ~E1(t), ~E2(t), and ~n(t).

Exercise 8.6. Let ~α = ~x ◦ ~αU and ~V (t) be as above. Show that ~V (t) is parallel along α if and only if θ ′(t) =
− sinφ0, for all t ∈ (−π,π).
Hint: Use the product and chain rules to compute ~V ′(t), and then apply the formulas from Exercise 8.4 to simplify
the result. Remember that ~V (t) is parallel along ~α if and only if ~V ′(t) has no tangential component.

We’re almost there. Exercise 8.6 tells us that if we want ~V (t) to be parallel along ~α and satisfy ~V (t0) = ~V0,
then we ought to set

θ (t) := θ0 − t sinφ0,

where ~V0 = L cosθ0 ~E1(t0)+ L sinθ0 ~E2(t0). We can then define ~V (t) by Equation 8.1. Among other things, this
tells us that it is always possible to parallel transport a vector along a circle of latitude.

The Mathematica file foucault.nb includes a manipulate which allows you to choose the values φ0 and
θ0 and then watch your vector ~V0 evolve in time.

Exercise 8.7. Let ~α = ~x ◦ ~αU be as above. If we parallel transport a vector ~V0 along ~α for time 2π, we will
return to our original point with a new vector ~V (t0 + 2π). Determine the angle between this new vector and
the original, ~V0.
Note: Technically, ~α(t) is only defined for t ∈ (−π,π), but let’s ignore this for now.

Finally, let’s see how all of this applies to the Foucault pendulum. Under some physical assumptions (e.g., a
very long pendulum arm, so that the weight at the bottom remains fairly flat; a very heavy weight, so that we
can treat gravity as the only relevant force), we can take the weight at the bottom of the pendulum to trace
out a straight line in the tangent plane to the Earth. In particular, we can take ~V0 to be the velocity vector
to the pendulum at the bottom of its swing. (We can choose one of the two directions of the swing.) As the
pendulum proceeds on its circle of latitude around the Earth, the vector ~V0 is parallel transported — and thus
rotated, from the point of view of someone living on Earth!

Exercise 8.8. Georgia Tech’s campus lies approximately 33.77◦ north of the equator. If the Institute were to
install a Foucault pendulum, approximately what would be its period, in hours? That is, how many hours
would be required for the vector ~V0 identified above to make one full rotation in the tangent plane?
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