
Math 4441 Activities Activity 5

5 Calculus on surfaces

Goals

By the end of this activity, we should be able to do the following.

1. Compute the differential d f of a C1 map f : Rn→ Rm.
2. State the chain rule for multivariable maps in differential form, matrix form, or index form.
3. Identify simple surfaces and coordinate transformations.

Today’s activity presents less of a cohesive story than some previous activities, but is more akin to a
traditional problem set. These problems are meant to reinforce important concepts introduced in lecture.

First, we want to see how the differential of a map Rn→ Rm transforms tangent vectors.

Exercise 5.1. Consider the function f : R2
r,θ → R

2
x ,y defined by

f (r,θ ) := (r cosθ , r sinθ ).

The subscripts on the two copies of R2 denote the coordinates we’re using, so you can think of R2
r,θ as the

"domain copy of R2" and R2
x ,y as the "range copy."

(a) On R2
r,θ , plot the curves ~αk(r) := (r, kπ/4), 0≤ r ≤ 3, for k = 0, 1,2,3, 4. On R2

x ,y , plot f ◦ ~αk.

(b) On R2
r,θ , plot the curves ~γk(r) := (k/2,θ ), 0≤ θ ≤ 2π, for k = 0, 1,2, 3,4. On R2

x ,y , plot f ◦ ~γk.

(c) Compute d f . At which points p ∈ R2
r,θ is the kernel of d fp trivial?

(d) Choose four intersection points p ∈ ~αi ∩ ~γ j . Try not to choose them all along the same curve. For each p,
plot ~e1 and ~e2 at p, then compute d fp(~e1) and d fp(~e2), and plot them at f (p).

You may recall from multivariable calculus that the chain rule takes on a very different form when we have
functions of several variables. We’ll use the chain rule extensively, so we need to get comfortable thinking
about it in a few different ways.

Exercise 5.2. Suppose f : R`→ Rm and g : Rm→ Rn are two C1 functions. Then we know that g ◦ f : R`→ Rn

is a C1 function.

(a) State the chain rule for these functions. That is, for any p ∈ R`, give an expression for d(g ◦ f )p in terms
of d g and d f . You don’t have to prove your expression; just state it. (But be careful with where d g and
d f are evaluated!)

(b) Write the chain rule in matrix form. That is, take the equation you wrote in (a) and expand all of the
differentials into Jacobian matrices. We’ll need coordinates in order to do this, so use u1, . . . , u` on R`
and v1, . . . , vm on Rm.

(c) Based on your work in (b), write an "indexed" version of the chain rule which gives the i, j-entry of
d(g ◦ f )p. That is,

∂ (g ◦ f )i

∂ u j

�

�

�

�

p
= ?

Hint: Most of this is worked out in the official course text, but really try to do this without peeking. Getting
comfortable with computations such as this will help the rest of the course go smoothly for you.

The next exercise asks you to work out a formula for a very important simple surface known as stereographic
projection.
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Exercise 5.3. The goal of this problem is to build a simple surface ~x : R2→ R3 whose image is the unit sphere
S2 = {(x , y, z) : x2+ y2+z2 = 1}, but with the point (0,0, 1) missing. Geometrically, ~x(u, v) is given as follows:
consider the line L in R3 which passes through (u, v, 0) and (0,0, 1). Then ~x(u, v) is the unique point where L
intersects S2. Give a formula for ~x(u, v), and check that ~x is a simple surface.
Hint: The derivatives involved in checking that this is a simple surface are quite messy, so you can use surfaces.nb
to compute them for you. (See Example 1 of the notebook.) But make sure to (1) give a simplified expression for
~xu × ~xv; (2) explain why this expression never vanishes.

Exercise 5.4. For some fixed values 0< r < R, consider the map ~x : (0,2π)× (0, 2π)→ R3 defined by

~x(θ ,φ) := (cosθ (R+ r cosφ), sinθ (R+ r cosφ), r sinφ).

(a) Verify that ~x is a simple surface. You can use surfaces.nb to verify your computation, but show all the
steps of this verification. (And leave r and R as arbitrary.)

(b) Choose some values for r and R and use surfaces.nb to plot the image of ~x . (Submit your plot.) What
pastry do you see?

Remember that the patches of a surface talk to each other via coordinate transformations. The following
exercise gives a second patch for the unit sphere in R3 and checks that it plays nicely with the patch you
constructed in Exercise 5.3.

Exercise 5.5.

(a) Use your work from Exercise 5.3 to produce a simple surface ~y : R2→ R3 whose image is S2 minus the
south pole (0, 0,−1). Your map should satisfy ~y(0, 0) = (0,0, 1). If you can figure out how to modify your
map ~x , you don’t have to redo the geometric derivation or verify that ~yu × ~yv is nonvanishing. But check
that ~y(0,0) = (0,0, 1).

(b) Notice that the restricted simple surfaces

~x |R2−{(0,0)} : R2 − {(0, 0)} → R3 and ~y|R2−{(0,0)} : R2 − {(0,0)} → R3

have the same image. (Namely, S2 with both poles missing.) Find a map

φ : R2 − {(0, 0)} → R2 − {(0,0)}

so that ~y|R2−{(0,0)} = ~x ◦φ.
Hint: Try "solving the equation for φ," and then you can determine φ geometrically.

(c) Verify that the map φ you constructed in (b) is a C1 coordinate transformation.
Hint: To find φ−1, argue geometrically again. Also, use Theorem 3.8 from the official text.

Finally, let’s plot a few curves on a surface.

Exercise 5.6. (Optional) Consider the surface ~x given in Exercise 5.4. There are two ways in which a surface
curve on ~x could wrap: around the hole or through the hole. For any integers m, n ∈ Z, give a parametrization
for a surface curve which wraps around the hole m times and through the hole n times. We’ll denote this curve
by T (m, n). Use surfaces.nb to plot T (1,0), T (0,1), and T (2, 3). (We left the vector notation off of these
curves to avoid confusion with the unit tangent vector, and also because T (m, n) is the conventional notation
for these torus knots.)
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