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1 Week 1
Our goal this week is to define the (Riemann) integral of a scalar-valued function f : Rn→ R, and to develop
the ability to discern between functions which are integrable and those which are not. This week will be — by
a long shot — the most tedious of the quarter, and we’ll really get into the weeds. If you find that you enjoy
the careful arguments we take up this week, then you can look forward to analysis courses such as 131ABC
and 132H; if ε really isn’t your letter, just hang on until next week, when we take a more computational
approach to the material.

1.1 Day 1: Preliminaries

Goals

By the end of today’s class, we should be able to do the following.
1. Identify compact boxes in Rn, as well as partitions of compact boxes.
2. Determine the infimum and supremum of a set of real numbers, and say what it means for a

function to be bounded.
3. Interpret the lower sum and upper sum of a bounded function over a partition as an area or

volume.

1.1.1 Some vocabulary in R

Definition. A compact interval is a subset of R of the form

[a, b] := {x ∈ R : a ≤ x ≤ b},

where a and b are real numbers. A compact subinterval of [a, b] is a compact interval [c, d] which is
contained in [a, b].

Remark. Notice that the empty set is a compact interval (we could take a > b), as are singleton sets {a}
(corresponding to a = b).

Definition. The length of a compact interval I , denoted |I |, is defined as follows. If I = [a, b] for some
real numbers a < b, then |I | := b− a. Otherwise — if I is a singleton or the empty set — |I | := 0.

Definition. Let I = [a, b] be a compact interval. A partition of I is a finite set of real numbers P =
{x0, x1, . . . , xk} such that

a = x0 < x1 < · · ·< xk = b.

The subintervals corresponding to the partition P are given by

Ji = [x i−1, x i] ⊂ [a, b] = I ,

for i = 1, . . . , k.

Remark.
1. Notice that the empty set does not admit any partitions, and a singleton set admits only one partition.

So the only intervals with an interesting set of partitions are those with nonzero length.
2. Because a partition is a finite set, each subinterval associated to a partition has nonzero length.

Exercise 1.1. Suppose P is a partition of the compact interval I , with corresponding subintervals J1, . . . , Jk.
Prove that

|I |=
k
∑

i=1

|Ji |.
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Definition. Let A be a subset of R, and let f : A→ R be a function. We say that f is bounded if its image
{ f (x) : x ∈ A} is a subset of some compact interval.

Example 1.2. The functions f (x) = e−x2 and g(x) = arctan(x) are bounded; notice that the domain for each
of these functions is R— which is not bounded. On the other hand, the function tan: (−π/2,π/2)→ R is
defined on a bounded interval, but is not bounded.
Exercise 1.3. Prove that if I is a compact interval and f : I → R is continuous, then f is bounded.

Before continuing our march towards a definition of the integral, we must quickly recall the notions of
least upper bound and greatest lower bound for a subset of the real numbers.

Definition. Let A be a subset of R, and let M be a real number. We say that M is an upper bound for A
if we have x ≤ M for every x ∈ A. We say that M is a least upper bound for A if we additionally know
that any other upper bound N for A satisfies N ≥ M .

The following result, whose proof we omit, establishes the existence and uniqueness of a least upper
bound.

Theorem 1.4

Let A be a nonempty subset of R. If A has an upper bound, then A has exactly one least upper bound.

This theorem justifies the following definition.

Definition. Let A be a subset of the real numbers. If A is non-empty and has an upper bound, define
sup(A) to be the least upper bound of A. If A is non-empty and has no upper bound, define sup(A) := +∞.
Finally, if A is empty, define sup(A) := −∞. We call sup(A) the supremum of A.

Analogously, we may define the notions of greatest lower bound and infimum.
Exercise 1.5. Produce definitions for the terms lower bound and greatest lower bound. State a result for
greatest lower bounds which is analogous to Theorem 1.4. Finally, give a definition for the infimum.
Remark. Try not to be intimidated by this new language. To guide your intuition, it’s relatively harmless to
think of sup as max and inf as min. The distinction is that a set is not required to contain its supremum or
infimum.

You’ll recall that the definite integral of a function f : [a, b]→ R over [a, b] is meant to measure the area
of the region bounded by x = a, x = b, y = 0, and y = f (x) in the x y-plane. We can now give our first
approximations of this area.

Definition. Let I be a nonempty compact interval, and let f : I → R be a bounded function. For every
nonemtpy compact subinterval J of I , introduce the notation

mJ ( f ) := inf{ f (x) : x ∈ J} and MJ ( f ) := sup{ f (x) : x ∈ J}.

Now let P be a partition of I , with corresponding subintervals J1, . . . , Jk. The lower sum of f over P is

L( f ,P) :=
k
∑

i=1

mJi
( f )|Ji |,

and the upper sum of f over P is

U( f ,P) :=
k
∑

i=1

MJi
( f )|Ji |.

Example 1.6. Consider the function f (x) = 1− x2 on the interval I = [−1, 1]. Let’s compute the lower and
upper sums of f over the partition P = {−1,−1/2, 0,1/3, 1}. The corresponding subintervals are

J1 = [−1,−1/2], J2 = [−1/2, 0], J3 = [0,1/3], J4 = [1/3, 1],
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(a) L( f ,P) (b) U( f ,P)

Figure 1.1: Graphical interpretations of the lower and up-
per sums for the function f (x) = 1 − x2 over the partition
P = {−1,−1/2,0, 1/3, 1}.

with lengths given by
|J1|=

1
2

, |J2|=
1
2

, |J3|=
1
3

, |J4|=
2
3

.

It’s then not too difficult to compute our extreme values:

mJ1
( f ) = 0, mJ2

( f ) =
3
4

, mJ3
( f ) =

8
9

, mJ4
( f ) = 0,

while
MJ1
( f ) =

3
4

, MJ2
( f ) = 1, MJ3

( f ) = 1, MJ4
( f ) =

8
9

.

Finally, we have

L( f ,P) =
4
∑

i=1

mJi
( f )|Ji |= (0)
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for our lower sum and

U( f ,P) =
4
∑

i=1

MJi
( f )|Ji |=
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�
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�

+
�

8
9

��

2
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=
389
216

for our upper sum. These sums are depicted in Figure 1.1.

1.1.2 The same vocabulary in Rn

In this subsection, we’ll repeat many of the definitions seen above, replacing R with Rn. For instance, an
interval in R is analogous to a box in Rn.

Definition. A compact box in Rn is a Cartesian product

B = I1 × I2 × · · · × In

of compact intervals I1, . . . , In. The volume of the box is the product of the lengths of its sides:

|B| := vol(B) :=
n
∏

j=1

|I j |.

A compact subbox of B is a compact box which is contained in B.

Remark. Notice that, according to this definition, a compact box must have its sides parallel to the coordinate
axes of Rn. So, for instance, the compact square {(x , y) ∈ R2 : |x | + |y| ≤ 1} in R2 does not satisfy this
definition of compact box.

Just as we partition compact intervals of R, we may partition compact boxes in Rn. We do this by
considering a product of partitions.
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(a) L( f ,P) (b) U( f ,P)

Figure 1.2: Graphical interpretations of the lower and upper sums
for a function of two variables, with a fine partition.

Definition. A partition of a box B = I1 × I2 × · · · × In in Rn is a Cartesian product

P = P1 ×P2 × · · · ×Pn

of partitions P j for I j .

Notice that there are many subboxes J of B associated to a partition P. In particular, if Ji1 , . . . , Jin are
subintervals of I1, . . . , In corresponding to P1, . . . ,Pn, respectively, then

Ji1 × · · · × Jin

is a subbox of B associated to P. Coming up with notation for these subboxes doesn’t sound very fun (we
have n partitions to think about, and these partitions need not have the same cardinality), so we will just
refer to these as subboxes of P.
Remark. Just as a subinterval associated to a partition of a compact interval could not have length zero, a
subbox associated to a partition of a compact box cannot have volume zero.

After partitions, we defined the notion of boundedness for functions of a single variable. The notion in
higher dimensions is precisely the same.

Definition. Let A be a subset of Rn, and let f : A→ R be a function. We say that f is bounded if its
image { f (x) : x ∈ A} is a subset of some compact interval.

At last, we can define the lower and upper sums in any dimension.

Definition. Let B be a nonempty compact box in Rn, and let f : B→ R be a bounded function. For every
nonemtpy compact subbox J of B, introduce the notation

mJ ( f ) := inf{ f (x) : x ∈ J} and MJ ( f ) := sup{ f (x) : x ∈ J}.

Now let P be a partition of B, with associated subboxes J . The lower sum and upper sum of f over P
are

L( f ,P) :=
∑

J

mJ ( f )|J | and U( f ,P) :=
∑

J

MJ ( f )|J |.

respectively, where the sum is taken over all boxes J associated to P.

Just as in the case n= 1, the lower and upper sums admit a natural interpretation graphically. An example
in the case n= 2 can be seen in Figure 1.2. Notice that the lower sum uses boxes which live entirely below
the (translucent) graph of f , while the upper sum uses boxes which lie entirely above the graph.
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Figure 1.3: A finer partition leads to a larger lower sum.

1.2 Day 2: The Riemann integral over boxes

Goals

By the end of today’s class, we should be able to do the following.
1. State the definition of the lower integral and upper integral of a bounded function over a

compact interval.
2. Give examples of integrable and nonintegrable functions.
3. Use the integrability criterion to determine whether or not a function is integrable.

Lemma 1.7. For every compact box B, every partition P of B, and every bounded function f : B→ R, L( f ,P)≤
U( f ,P).

Exercise 1.8. Prove Lemma 1.7

Definition. Let P and P ′ be partitions of a compact box B. Then P ′ is a refinement of P if P ⊂ P ′, in
which case we say that P ′ refines P.

Lemma 1.9. Suppose that P and P ′ are partitions of B, and that P ′ is a refinement of P. Then

L( f ,P)≤ L( f ,P ′) and U( f ,P ′)≤ U( f ,P).

Idea of proof. We’ll give a proof-by-picture for the first claim in the case n= 1. The basic idea is that when we
take a finer partition, our boxes are smaller, and thus mJ ( f ) has less of an opportunity to be small, so the
lower sum is larger. Similarly, MJ ( f ) has less opportunity to be large, so the upper sum is smaller. Consider
Figure 1.3. The gray boxes depict the lower sum for f over a partition P; we may refine this partition by
cutting each interval in half. This produces the refinement P ′ of P, and we see that this partition leads to a
larger lower sum.
Exercise 1.10. Turn the proof-by-picture into a formal proof.

Definition. Given two partitions

P = P1 × · · · ×Pn and P ′ = P ′1 × · · · ×P ′n

of a compact box B in Rn, the common refinement of P and P ′ is the partition

P ′′ = (P1 ∪P ′1)× · · · × (Pn ∪P ′n).

The point of the common refinement is that it is the smallest partition which refines both P and P ′.
Intuitively, a partition tells us where to cut a box into subboxes; the common refinement tells us to cut
wherever either of P or P ′ cuts.

7



Math 32BH Lecture Notes Week 1

We are now ready to say what it means for a bounded function on a nonempty compact box in Rn to be
integrable.

Definition. Let f : B→ R be a bounded function, where B is a nonempty compact box in Rn. The lower
integral of f over B, denoted L

∫

B
f , is the least upper bound of the lower sums of f over all partitions

of B:
L

∫

B

f := sup{L( f ,P) : P is a partition of B}.

Similarly, the upper integral of f over B is denoted U
∫

B
f , and is the greatest lower bound of the upper

sums of f over all partitions of B:

U

∫

B

f := inf{U( f ,P) : P is a partition of B}.

We say that f is integrable over B if L
∫

B
f = U

∫

B
f , and in this case we define the integral of f over B

to be their common value:
∫

B
f := L

∫

B
f = U

∫

B
f .

Yikes. This definition is sort of a lot to take in, but our graphical interpretations of upper and lower sums
can help us develop an intuition. Lower sums always give an underestimate of the value we’re after, and the
lower integral is the biggest such underestimate1. In the n= 1 case, this means that the area under our curve is
at least as large as L

∫

B
f . Upper sums, on the other hand, overestimate the value we’re trying to compute,

and the upper integral is the smallest such overestimate2. So the true value of the integral is no more than
U
∫

B
f . If we have

L

∫

B

f = U

∫

B

f ,

then the value of
∫

B
f must be exactly this common value. If, on the other hand, L

∫

B
f < U

∫

B
f , then we can’t

pinpoint a precise value for
∫

B
f , and we say that f is not integrable over B.

Lemma 1.11. Let B be a compact box in Rn, f : B→ R a bounded function. Then the lower integral of f over B
is no larger than the upper integral of f over B.

Exercise 1.12. Prove Lemma 1.11.
Hint: First show that if L and U are subsets of R with the property that ` ≤ u for all ` ∈ L and u ∈ U , then
sup(L)≤ inf(U).

Corollary 1.13. Let B be a compact box in Rn, f : B→ R a bounded function. Then f is integrable over B if and
only if L

∫

B
f ≥ U

∫

B
f .

Proof. Lemma 1.11 tells us that L
∫

B
f ≤ U

∫

B
f , so L

∫

B
f = U

∫

B
f if and only if L

∫

B
f ≥ U

∫

B
f .

Except in particularly boring cases — constant functions, step functions, linear functions, etc. — com-
puting an integral from the definition is a far-from-straightforward task. You may recall computing some
Riemann sums in your single-variable calculus class before learning about the Fundamental Theorem of
Integral Calculus, and you probably had a bad time. Our story will follow a similar arc this quarter, and we’ll
soon meet a savior that spares us the pain of computing integrals from the definition.

First, however, let’s meet a character you probably missed in your first encounter with the integral: a
non-integrable function.
Example 1.14. In this example, we will define a function using the rational numbers Q. Recall that Q consists
of those real numbers which can be expressed as a ratio of the form p/q, where p and q are integers, and q is
nonzero. The relevant fact about Q for this example is that every interval in R contains rational numbers as
well as irrational numbers — those real numbers which are not in Q. For this reason we say that both Q and
its complement R \Q are dense in R.

1This is a little bit of a lie. It may be the case that none of the lower sums are actually equal to the lower integral, just that we can find
lower sums arbitrarily close to the lower integral. This is the difference between max and sup, but this isn’t a crucial distinction when
developing intuition.

2This is also a lie, since min 6= inf.
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Now let B = [0,1], and define f : B→ R by

f (x) :=
§

1, x ∈Q
0, x 6∈Q .

This is known as the Dirichlet function, or the indicator function of Q. I’ve also heard it called the salt and
pepper function, but I don’t see that catching on. Now suppose that J is a compact subinterval of B of nonzero
length. Then J contains points which are in Q as well as points which are not in Q. For this reason,

mJ ( f ) = 0 and MJ ( f ) = 1.

Then for any partition P of B we have

L( f ,P) =
∑

J

mJ ( f )|J | and U( f ,P) =
∑

J

MJ ( f )|J |,

where the sums are taken over all compact subintervals J corresponding to P. Based on our computation of
mJ ( f ) and MJ ( f ), these turn into3

L( f ,P) =
∑

J

0 · |J |= 0 and U( f ,P) =
∑

J

1 · |J |= |B|= 1.

(The fact that the lengths of the subintervals sum to the length of B follows from Exercise 1.1.) That is, every
lower sum of f is 0, and every upper sum of f is 1. So

L

∫

B

f = 0 and U

∫

B

f = 1.

Since L
∫

B
f 6= U

∫

B
f , we see that f is not integrable over B.

Remark. It’s more accurate to say that the Dirichlet function is not Riemann integrable. A little later in your
mathematical career you’ll learn about the Lebesgue integral, which is defined for this function, and evaluates
to 0.
Exercise 1.15. Letting f denote the Dirichlet function from the previous example, construct a sequence { fn}
of functions fn : [0, 1]→ R, each of which is integrable over [0,1], with the property that limn→∞ fn(x) = f (x)
for every x ∈ [0,1]. This demonstrates the fact that Riemann integrability is not preserved under pointwise
convergence.
Hint: Because Q is countable, we may choose an enumeration {qn} of Q. Now "turn on" one rational number at a
time.

We’ve already said that we won’t be doing much computing with the definition of the integral, but even
checking whether or not a function is integrable can be an annoying task. For instance, a polynomial function
seems like it should be integrable, but what’s your proof of this fact? The following result will be helpful over
and over again in showing that a function is integrable.

Theorem 1.16: The integrability criterion

Let B be a compact box in Rn, f : B→ R a bounded function. Then f is integrable over B if and only if,
for every ε > 0, there exists a partition P of B such that U( f ,P)− L( f ,P)< ε.

Proof. We will prove the portion of this theorem that we will use most frequently. Namely, we’ll show that if,
for every ε > 0, there exists a partition P of B satisfying U( f ,P)− L( f ,P)< ε, then f is integrable. To show
that f is integrable, we need to show that U

∫

B
f = L

∫

B
f or, equivalently, that

U

∫

B

f − L

∫

B

f = 0.

We’ll do this by showing that U
∫

B
f − L

∫

B
f is smaller than any positive number. Take some arbitrarily small

ε > 0. By assumption, we can find P satisfying
U( f ,P)− L( f ,P)< ε.

3You might contest that our computation of mJ ( f ) and MJ ( f ) does not apply to intervals with zero length. But recall that a subinterval
associated to a partition cannot have zero length.
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Now U( f ,P)≥ U
∫

B
f and L( f ,P)≤ L

∫

B
f , so this implies that

U

∫

B

f − L

∫

B

f < ε.

So U
∫

B
f − L

∫

B
f is smaller than any positive number. Lemma 1.11 tells us that U

∫

B
f − L

∫

B
f cannot be

negative, so this quantity must be zero, as desired.
Because it only requires a single partition P for a given real number ε > 0, Theorem 1.16 allows us to

avoid thinking about the infimum and supremum involved in the definition of the upper and lower integral.
Example 1.17. Let’s use the integrability criterion to show that the function f : [0, 1]→ R defined by

f (x) :=
§

0, 0≤ x ≤ 1/2
8, 1/2< x ≤ 1

is integrable. To do this, we start with an arbitrary ε > 0, and we need to construct a partition P of [0, 1]
with the property that U( f ,P)− L( f ,P)< ε. We can do this by squeezing the "jump" which occurs at x = 1/2
into a very small interval. Concretely, suppose h> 0 is some number smaller than 1/2. Then we can consider
the partition

Ph = {0, 1/2− h, 1/2+ h, 1}.

The subintervals associated to this partition are

J1 = [0, 1/2− h], J2 = [1/2− h, 1/2+ h], and J3 = [1/2+ h, 1].

The extreme values on these intervals are given by

mJ1
( f ) = 0, mJ2

( f ) = 0, and mJ3
( f ) = 8,

and
MJ1
( f ) = 0, MJ2

( f ) = 8, and MJ3
( f ) = 8.

So the lower sum is
L( f ,Ph) = (0)(1/2− h) + (0)(2h) + (8)(1/2− h) = 4− 8h

and the upper sum is

U( f ,Ph) = (0)(1/2− h) + (8)(2h) + (8)(1/2− h) = 4+ 8h.

The difference between these is
U( f ,Ph)− L( f ,Ph) = 16h.

The integrability criterion tells us that f is integrable if we can produce a partition so that this difference is
less than ε, for any given ε > 0. Given ε > 0, we can simply choose h smaller than ε/16, and our work here
shows that U( f ,Ph)− L( f ,Ph)< ε. So f is indeed integrable.

1.3 Day 3: Continuity and integrability

Goals

By the end of today’s class, we should be able to do the following.
1. Say what it means for a function of several variables to be continuous — both via the formal

definition and via informal intuition.
2. Explain (at least informally) why continuous functions on compact boxes are integrable.

Definition. Let A be a subset of Rn, and consider a function f : A→ R. We say that f is continuous
at ~x0 ∈ A if, for every ε > 0, we may choose δ > 0 such that if ~x1 ∈ A is an element of A satisfying
d(~x0, ~x1) < δ, then we have | f (~x0)− f (~x1)| < ε. If f is continuous at ~x for every ~x ∈ A, we simply say
that f is continuous.

The idea you should internalize is this: for continuous functions, a small change in the input leads to a
small change in the output.

10
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(a) Smaller x0 (b) Larger x0

Figure 1.4: For the function f (x) = x2, different values of x0
require different values of δ— even for the same ε.

Example 1.18. Consider the function f : R2→ R defined by

f (x , y) :=
§

1, x = 0
−1, x 6= 0

.

This function certainly doesn’t match our intuitive notion of continuity — there are inputs very close to the
line x = 0 whose output is −1, while inputs on this line have output 1. To prove that f is not continuous, we
simply need to exhibit some ε > 0 (in this case, we get to choose ε > 0) such that, no matter how small δ > 0
is chosen (we don’t get to choose δ > 0), there are points (x1, y1) and (x2, y2) whose distance from each other
is less than δ, but whose function values differ by more than ε.

Concretely, suppose ε= 1/2, and let δ > 0 be arbitrary. Consider the point (δ/2,0). The distance between
this point and (0, 0) is less than δ:

d((δ/2,0), (0,0)) = δ/2< δ.

At the same time,
| f (δ/2, 0)− f (0,0)|= | − 1− 1|= 2>

1
2
= ε.

So we can choose points which are arbitrarily close together whose function values are not close to one
another, meaning that f is not continuous at (0,0). (Indeed, f fails to be continuous at any point with x = 0.)

You may remember (depending on where you learned calculus) having to use the definition of continuity
to prove that certain functions are continuous. No such problems will be formally assigned in this course, but
we will discuss one example of this sort in order to better understand uniform continuity.
Example 1.19. Consider the function f : R → R defined by f (x) = x2. This satisfies our intuitive notion
of continuity, so let’s think about how we would check the definition. Namely, we want to show that f is
continuous at x0, where x0 is an arbitrary real number. Say we’re given4 ε > 0. We need to come up with
δ > 0 so that if |x − x0|< δ, then | f (x)− f (x0)|< ε. Actually doing this isn’t hard, but it’s kind of tedious.

Instead, let’s think about the graph of f , shown in Figure 1.4. In each of Figures 1.4a and 1.4b we have
selected a value for x0; the chosen value for ε > 0 is the same in both figures, depicted via the orange lines
centered on y = f (x0). Our goal is to choose a δ > 0 such that if |x − x0|< δ, then | f (x)− f (x0)|< ε. We can
find such a δ for each value of x0 shown, as shown by the blue lines centered on x = x0. But notice that the δ
we choose for the larger value of x0 is necessarily smaller. In words, we have some threshold for acceptable
error in our output (measured by ε), and to keep our output error under this threshold, we can only allow so
much error in our input (measured by δ). Because we can produce a δ > 0 for any choice of ε > 0 and x0 ∈ R,
f is continuous on all of R.

We must point out, however, that the amount of error we can allow in our input in the previous example
depends on x0 — and as x0 grows without bound, the acceptable input error shrinks to 0. In particular, given
ε > 0, we cannot choose a single δ > 0 that works for all values of x0. This is okay — our function is still
continuous — but it leads us to the following, greedier notion of continuity.

4When proving that a function is continuous, we’re given ε > 0 and we choose δ > 0, the opposite of the situation when we’re proving
that a function is not continuous.

11
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Definition. Let A be a subset of Rn, and consider a function f : A→ R. We say that f is uniformly
continuous if, for every ε > 0, we may choose δ > 0 such that if ~x1, ~x2 ∈ A are an elements of A satisfying
d(~x1, ~x2)< δ, then we have | f (~x1)− f (~x2)|< ε.

Remark. Notice the distinction between uniform continuity and continuity: the definition of continuity allows
us to choose δ > 0 based on both ε > 0 and a point ~x0 ∈ A, while uniform continuity demands a δ which
depends only on ε, and works for any choice of ~x0 ∈ A. Clearly any function which is uniformly continuous is
continuous.
Exercise 1.20. Let f : (0,∞)→ R be defined by f (x) := 1/x . Is f uniformly continuous? What if we restrict
f to (0, 1]? What about [1,∞)?

One of our goals for today is to show that continuous functions on compact boxes are integrable. We
restrict attention to functions on compact boxes in order to take advantage of the following fact5.
Lemma 1.21. Let B be a compact box in Rn, and let f : B→ R be a continuous function. Then f is uniformly
continuous.

Exercise 1.22. Read a proof of Lemma 1.21 (or write your own!).
Note: The proof of this fact gets at the heart of the notion of compactness, so you may like thinking about it if
analysis is your thing. But it’s certainly not something you’re responsible for in this course.

Taking Lemma 1.21 as true, today’s primary goal is well within reach.

Theorem 1.23: Continuity implies integrability

Let B be a compact box in Rn. If f : B→ R is continuous, then f is integrable.

Proof. We’ll prove this theorem using Theorem 1.16, the integrability criterion. So we need to show that,
given some arbitrary ε > 0, we can find a partition P of B with the property that

U( f ,P)− L( f ,P)< ε.

First, let’s make an obvious observation: if vol(B) = 0, then f is automatically integrable — all of the lower
sums and upper sums are just 0, so the lower and upper integrals agree. With this out of the way, we can
assume that vol(B) 6= 0 and define

ε′ :=
ε

vol(B)
.

Next, Lemma 1.21 tells us that f is uniformly continuous. This means that we can find δ > 0 with the property
that whenever ~x1, ~x2 ∈ B have d(~x1, ~x2)< δ, we have | f (~x1)− f (~x2)|< ε′.

Now comes the first step that requires a dose of geometric reasoning. Let’s take a partition P of B so that
every subbox J associated to P has side lengths less than δ/n. This ensures that if ~x1, ~x2 ∈ J for some subbox
J associated to P, then d(~x1, ~x2)< δ (why?). But then, by our choice of δ, we know that

| f (~x1)− f (~x2)|< ε′ =
ε

vol(B)
.

In particular, the supremum of all values attained by f as ~x varies over J can differ from the infimum by at
most ε′:

MJ ( f )−mJ ( f )< ε
′ =

ε

vol(B)
.

Finally, we multiply by vol(J) and sum over all subboxes J corresponding to P:
�

∑

J

MJ ( f )vol(J)

�

−

�

∑

J

mJ ( f )vol(J)

�

=
∑

J

εvol(J)
vol(B)

=
ε

vol(B)

∑

J

vol(J).

The two sums on the left hand side of this inequality are the upper and lower sums of f over P, respectively.
Also,

∑

J vol(J) = vol(B), so we have
U( f ,P)− L( f ,P)< ε.

According to the integrability criterion, we may conclude that f is integrable.
5We haven’t said what it means for a subset of Rn to be compact, but the fact actually holds for any compact subset of Rn — not just

boxes.
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Exercise 1.24. Let J be a compact box in Rn whose sides each have length less than δ/n. Show that if ~x1

and ~x2 are a pair of points in J , then d(~x1, ~x2)< δ.

13
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2 Week 2
We begin this week by finishing up our discussion of the fact that continuity implies integrability (see notes
above). We will then spend some time defining integration over subsets of Rn which are not compact boxes,
but with far less attention to detail than we employed last week. We then turn to the star of this week:
Fubini’s theorem. This theorem will allow us to begin evaluating integrals of functions of several variables
using familiar techniques from single-variable calculus. After sketching the proof of Fubini’s theorem, we will
practice using the result by seeing several examples.

2.1 Day 4: Integration over nonboxes

Goals

By the end of today’s class, we should be able to do the following.
1. Give an informal explanation of how to define the integral of a function f : K → R, where K is a

compact subset of Rn whose boundary has volume zero.
2. State the difference between a multiple integral and an iterated integral.

2.1.1 Defining integration over nonboxes

Definition. Let S be a subset of Rn. The indicator function of S is a function χS : Rn→ R defined by

χS(x) :=
§

1, x ∈ S
0, x 6∈ S .

The indicator function is also called the characteristic function of S.

For many bounded subsets of Rn, we can use the indicator function to define the set’s volume.

Definition. The volume of a bounded subset S of Rn is defined to be

vol(S) :=

∫

B

χS ,

where B is any compact box in Rn containing S, if this integral exists.

Exercise 2.1. Prove that volume is well-defined. i.e., show that if
∫

B
χS exists for some compact box B

containing S and B′ is another compact box containing S, then
∫

B′
χS exists and

∫

B′
χS =

∫

B
χS .

Exercise 2.2. Find a nonempty subset of R whose volume is not defined.
Say we have a compact box B over which we want to integrate some function f : B → R, and a subset

S ⊂ B which has volume zero. Then, at least heuristically, our integral shouldn’t care what f is doing on S.
For instance, consider the function f : [−1,1]→ R defined by

f (x) :=
§

1, x 6= 0
2021, x = 0

.

By any reasonable definition, the integral
∫

[−1,1] f should be 2 — the fact that f jumps up to 2021 at x = 0
shouldn’t affect the area under the graph of f , since the singleton {x = 0} doesn’t have any width. This
motivates the definition of near-continuity, which asks a function to be continuous, except perhaps on a subset
of volume zero.

Definition. Let A be a subset of Rn. We call a function f : A→ R nearly continuous on A if there is a
subset S ⊂ A with volume zero so that f is continuous when restricted to A\ S.

Remark. The basic idea of near-continuity is that "jump discontinuities" are okay from the standpoint of
integration. Except, where functions of a single variable "jump" at a single point, a function of two variables

14
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can jump along a point, a line, or a curve, and functions of several variables can jump along any set of volume
zero.

Theorem 2.3: Near continuity implies integrability

Let B be a compact box in Rn, and let f : B→ Rn be a bounded, nearly continuous function. Then f is
integrable over B.

Idea of proof. An unfortunate feature of Riemann integration is that the careful proof of Theorem 2.3 is more
tedious than the statement initially lets on. Later you’ll learn about a better integral where Theorem 2.3
follows more or less immediately from Theorem 1.23. For now, we’ll present the basic idea. See the textbook
for a careful proof.

The key idea is quite simple: because f is bounded, the only points of B which might present a problem
when defining the integral of f are those points where f is discontinuous. But f is nearly continuous, so
the set of such points has zero volume, and therefore shouldn’t create any difference between the lower and
upper integrals. We can turn this into a rigorous proof using Theorem 1.16. We are given some ε > 0, and we
want to find a partition P satisfying U( f ,P)− L( f ,P)< ε. We pull this off by starting with a partition with
the following property: let S ⊂ B be a set of volume zero containing the discontinuities of f . We choose P
so that the sum of the volumes of those subboxes of P which intersect S is less than ε/(4R), where R> 0 is
chosen to satisfy | f (x)|< R, for all x ∈ B. By covering S with such tiny subboxes, and using the fact that f is
bounded, we ensure that any contribution to L( f ,P) or U( f ,P) made by these subboxes is negligible, and
therefore the set of discontinuities doesn’t cause f to be non-integrable.

Definition. Let K be a compact subset of Rn whose boundary1 has volume zero, and let f : K → R be a
bounded, nearly-continuous function. Let B be any compact box in Rn containing K. Then the extension
of f to B is the function f̃ : B→ R defined by

f̃ (x) :=
§

f (x), x ∈ K
0, x 6∈ K .

The integral of f over K is then defined to be
∫

K

f :=

∫

B

f̃ .

Remark. We haven’t defined what it means for a function to be integrable over K, because the conditions in
the above definition ensure that the integral

∫

B
f will exist. We’re slowly shifting our focus from details such

as these towards more computational concerns.
Finally, let’s list (without proof) some unsurprising properties of the integral, hopefully familiar from

single-variable calculus.

Properties of integrals. Let K ⊂ Rn be a compact set whose boundary has volume zero, and let f , g : K → R
be a pair of nearly continuous functions. Then the following statements are true.

1. (Linearity) For any real numbers c, d ∈ R, we have
∫

K
(c f + d g) = c

∫

K
f + d

∫

K
g.

2. (Monotonicity) If f ≤ g on K, then
∫

K
f ≤

∫

K
g.

3. (Additivity) Let K1, K2 ⊂ K be a pair of compact subsets of K whose intersection K1 ∩ K2 has volume
zero, with K1 ∪ K2 = K. Then

∫

K1
f +

∫

K2
f =

∫

K
f .

1We won’t formally define the boundary of a subset of Rn, but for any subset of Rn we consider in this class, the boundary will be what
you think it is, and will have volume zero. The extra words in this definition basically just ensure that we’re not trying to integrate over a
Cantor set or an Osgood curve, or some other pathological set.
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2.1.2 Multiple integrals versus iterated integrals

Now that we’ve gone through the pain of defining the integrals we care to compute, we’ll begin developing
some actual integrating skills. The first and most important fact we will learn relates integrals in higher
dimensions to iterated versions of the single-variable integrals with which we’re familiar. To this end, we
introduce some notation. We will use the term multiple integral to refer to any integral

∫

R
f , where R is a

region in Rn, n > 1. In the special cases n = 2 and n = 3 we say that we have a double integral or triple
integral, respectively.

You may have noticed that our integrals haven’t featured any d x or d y terms at their ends. We will change
this now, using

∫

R
f dA to denote a double integral and

∫

R
f dV to denote a multiple integral of more variables.

Additionally, we will sometimes write
∫∫

R

f dA and
∫∫∫

R

f dV

for the special cases of double and triple integrals. The expressions dA and dV won’t have any formal meaning
for us right now — though they’ll be helpful when performing changes of variables — but hopefully we will
be able to revisit these terms later in the quarter.

Finally, we define iterated integrals. Iterated integrals are built up from single-variable integrals, and
thus can be computed using your existing integration skills. The primary goal of our next class will be to
rewrite multiple integrals as iterated integrals.

Say we have a function f (x , y), defined on a box [a, b]× [c, d] in R2. Then, for each x ∈ [a, b], we can
think of f (x , y) as a single-variable function on [c, d] by treating x as constant. This allows us to compute

∫ d

c

f (x , y)d y :=

∫

[c,d]

f (x , y),

the result of which is a function of x on [a, b]. If this function of x is integrable, we can then compute
∫ b

a

�

∫ d

c

f (x , y)d y

�

d x .

This is an iterated integral, because it consists of one one-dimensional integral nested inside of another. More
generally, an n-fold iterated integral consists of n one-dimensional integrals nested inside one another:

∫ b1

a1

∫ b2(x1)

a2(x1)

· · ·
∫ bn(x1 ,...,xn−1)

an(x1 ,...,xn−1)

f (x1, x2, . . . , xn)d xn · · · d x2d x1.

Notice, somewhat confusingly, that the limits of integration of the inner integrals may depend on the variables
of the outer variables.
Remark. One reason we’ve started using terms like d x and d y again is to keep track of the order of our
iterated integrals. In the above iterated integral, the term d xn · · · d x2d x1 tells us that the innermost integral
treats xn as variable, while the variable of the outermost integral is x1. We could also have an n-fold iterated
integral of the form

∫ bn

an

∫ bn−1(xn)

an−1(xn)

· · ·
∫ b1(x2 ,...,xn)

a1(x2 ,...,xn)

f (x1, x2, . . . , xn)d x1 · · · d xn−1d xn,

or have the variables in any other order we like. The important thing is that outer integrals do not depend on
inner variables.

16



Math 32BH Lecture Notes Week 2

Remark. We assume that you have seen (and hopefully proved) the Fundamental Theorem of Integral
Calculus before, and will assume this going forward. That is, if f : [a, b]→ R is a Riemann integrable function
on [a, b] and F is an antiderivative of f on [a, b], then

∫ b

a

f (x)d x :=

∫

[a,b]

f = F(b)− F(a).

The practical upshot is that we know how to compute integrals of functions of a single variable. We only have
this theorem for single-variable integrals, so we’ll need to establish a different theorem to compute multiple
integrals. This is the topic of our next class meeting.

Example 2.4. Compute the values of the following iterated integrals:
(a)

∫ 2

0

∫ 1

0
(x2 + y2)d xd y

(b)
∫ 1

−1

∫

p
1−x2

0
1d yd x

Solution.
(a) First we compute the inner integral,

∫ 1

0
(x2 + y2)d x . The differential d x tells us that we should be

treating x as variable and y as constant. We have
∫ 1

0

(x2 + y2)d x =
�

1
3

x3 + x y2
�1

0
=

1
3
+ y2.

We can now compute the outer integral:
∫ 2

0

�

1
3
+ y2

�

d y =
�

1
3

y +
1
3

y3
�2

0
=

2
3
+

8
3
=

10
3

.

So
∫ 2

0

∫ 1

0

(x2 + y2)d xd y = 10/3 .

(b) Our computation this time will proceed in a manner very similar to (a), except that the upper limit of
our inner integral depends on the variable of our outer integral. But this is fine, because we expect the
result of our inner integral to be a function of x (in this case) anyway. We have

∫

p
1−x2

0

1d y = [y]
p

1−x2

0 =
p

1− x2,

so the outer integral is
∫ 1

−1

p
1− x2d x . Using the substitution x = cosθ , this becomes

∫ 1

−1

p

1− x2d x =

∫ 0

π

| sinθ |(− sinθ )dθ =

∫ π

0

sin2 θdθ

=
1
2

∫ π

0

(1− cos(2θ ))dθ =
1
2

�

θ −
1
2

sin(2θ )
�π

0

=
π

2
.

So our iterated integral evaluates to π/2 . Notice that this is the area of a semicircular disc with radius
1. If we interpret our bounds of integration as giving the region

{(x , y) : −1≤ x ≤ 1 and 0≤ y ≤
p

1− x2}

in R2, we get precisely such a semicircular disc.
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2.2 Day 5: Fubini’s theorem

Goals

By the end of today’s class, we should be able to do the following.
1. State Fubini’s theorem, relating multiple integrals to iterated integrals.
2. Sketch the proof of Fubini’s theorem.
3. List the iterated integrals which correspond to a given multiple integral.

2.2.1 Fubini’s theorem: from multiple integrals to iterated integrals

We’ve now gone to great pains to formally define integration for functions of several variables, but we still
don’t have any truly practical means of evaluating an integral. A similar thing happened in single-variable
calculus — at first, the only way you knew how to compute the value of an integral was via Riemann sums,
which were tedious and ugly. But then the Fundamental Theorem of Integral Calculus saved the day, telling
you that an integral could be computed as an antiderivative. This time our savior is Fubini’s theorem.

Theorem 2.5: Fubini’s Theorem

Let B = [a, b]× [c, d] be a compact box in R2, and let f : B→ R be bounded and nearly-continuous on
B. Suppose that for each x0 ∈ [a, b], the cross-sectional integral

∫ d

c
f (x0, y)d y exists. Then the iterated

integral
∫ b

a

∫ d

c
f (x , y)d yd x also exists, and

∫

B

f dA=

∫ b

a

∫ d

c

f (x , y)d yd x . (2.1)

Remark. Some notes about Theorem 2.5:
1. Some version of Fubini’s theorem holds in Rn, for any n≥ 2. We’ve just stated the n= 2 case here for

ease of notation, but you’re invited to write the analogous statement in higher dimensions.
2. You should internalize Fubini’s theorem as telling us that multiple integrals can be computed as iterated

integrals.
Idea of proof. Throughout our proof, P1 will denote a partition of [a, b], while P2 is a partition of [c, d], and
therefore P = P1 ×P2 is a partition of B. We’ll also consider the function g : [a, b]→ R defined by

g(x) =

∫ d

c

f (x , y)d y.

Based on our discussions of the last several days, we have

L( f ,P)≤
∫

B

f dA≤ U( f ,P) (2.2)

for the integral on the left hand side of (2.1), and

L(g,P1)≤
∫ b

a

g(x)d x ≤ U(g,P1) (2.3)

for the integral on the right. Moreover, as we take finer and finer partitions, these two inequalities will squeeze
in on the true values of the respective integrals. The key step in our proof will be to argue that we have

L( f ,P)≤ L(g,P1)≤ U(g,P1)≤ U( f ,P). (2.4)

Now when the inequalities (2.2) and (2.3) squeeze down on their respective values, we see from (2.4) that
these values are in fact the same.

Some details of the argument will be left as (optional) exercises. Throughout, we’ll use the notation
ϕx (y) := f (x , y). Notice that g(x) =

∫ d

c
ϕx (y)d y, for every x ∈ [a, b].
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Exercise 2.6. For any subinterval J associated to P1 and any subinterval K associated to P2, show that

mJ×K( f )≤ mK(ϕx ),

for every x ∈ J .
Using Exercise 2.6, we have the following chain of inequalities:

∑

K

mJ×K( f )|K | ≤
∑

K

mK(ϕx )|K |= L(ϕx ,P2)

≤
∫ d

c

ϕx (y)d y = g(x),

for all x ∈ J . Here J is an arbitrary subinterval associated to P1, and the sums are taken over subintervals K
associated to P2. The point is that we have a lower bound for g on the subinterval J , and thus

∑

K

mJ×K( f )|K | ≤ mJ (g). (2.5)

Exercise 2.7. Use (2.5) to show that
∑

J ,K

mJ×K( f )vol(J × K)≤
∑

J

mJ (g)|J |

where the sums are taken over all subintervals J , K associated to P1,P2, respectively.
Finally, we may rewrite the conclusion of Exercise 2.7 as

L( f ,P)≤ L(g,P1),

which gives us one half of the key inequality (2.4). A completely analogous inequality tells us that U(g,P1)≤
U( f ,P), and thus we get (2.4).

2.2.2 The iterated integrals associated to a multiple integral

Now that we’ve convinced ourselves that Fubini’s theorem is true, let’s practice using it.
Example 2.8. Evaluate the multiple integral

∫

B
f dA, where B = [0, 1]× [0,2] and f (x , y) = x2 + y2.

Solution. First, let’s point out that f is definitely integrable over B, since B is compact and f is continuous2.
According to Fubini’s theorem, we have

∫

B

f dA=

∫ 1

0

�

∫ 2

0

(x2 + y2)d y

�

d x =

∫ 1

0

�

x2 y +
1
3

y3
�2

0
d x

=

∫ 1

0

�

2x2 +
8
3

�

d x =
�

2
3

x3 +
8
3

x
�1

0

=
10
3

.

Notice that this agrees with the value of
∫ 2

0

∫ 1

0
(x2 + y2)d yd x , which we computed in Example 2.4. Indeed,

provided the relevant hypotheses are satisfied, Fubini’s theorem allows us to compute a multiple integral as
an iterated integral in any order we like.

Fubini’s theorem is stated for boxes, but it also allows us to compute integrals over nonboxes as iterated
integrals. For instance, suppose we have functions g, h: [a, b]→ R, with g(x)≤ h(x) for all x ∈ [a, b]. Then
we can define a region

R := {(x , y) : x ∈ [a, b] and g(x)≤ y ≤ h(x)} ⊂ R2,

which we say is a vertically simple region, and then hope to compute
∫

R
f dA, for some function f : R→ R2.

Fubini’s theorem allows us to compute this integral as an iterated integral.
2Wewon’t be in the habit of saying this every time we compute an integral; I’m just pointing it out here since this is our first computation.
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(a) Vertically simple (b) Horizontally simple

Figure 2.1: A vertically simple region and a horizontally simple
region in R2

Exercise 2.9. Use Fubini’s theorem to prove that
∫

R

f dA=

∫ b

a

�

∫ h(x)

g(x)

f (x , y)d y

�

d x

under some hypotheses on f , g, and h. (You should specify the hypotheses.)
Example 2.10. Consider the semicircular disc R = {(x , y) : −1 ≤ x ≤ 1 and 0 ≤ y ≤

p
1− x2}. The area of

this region is given by

Area(R) =

∫

R

1dA=

∫ 1

−1

∫

p
1−x2

0

1d yd x =
π

2
,

where the final equality follows from our work in Example 2.4.
In a manner completely analogous to Exercise 2.9, one can show that if

R= {(x , y) : c ≤ y ≤ d and g(y)≤ x ≤ h(y)}

for some functions g, h: [c, d]→ R satisfying g(y)≤ h(y), then
∫

R

f dA=

∫ d

c

∫ h(y)

g(y)

f (x , y)d xd y,

supposing g, h, and f are suitably nice. Regions which can be written in this manner are horizontally simple.
Many regions we encounter are both vertically simple and horizontally simple, meaning that we can compute
integrals over these regions as iterated integrals in two different ways: with x as our inner variable, or with y
as our inner variable. Sometimes the order of integration has no practical effect, but in other cases, we can
only reasonably compute one of the two iterated integrals.
Example 2.11. Let R be the right triangle in R2 with vertices at (0, 0), (1, 2), and (1, 0), and define f : R→ R
by f (x , y) = e−x2 . Let’s compute

∫

R
f dA. As depicted in Figure 2.2, R is both vertically simple and horizontally

simple: we may write
R= {(x , y) : 0≤ x ≤ 1 and 0≤ y ≤ 2x}

and
R= {(x , y) : 0≤ y ≤ 2 and y/2≤ x ≤ 1}.

Fubini’s theorem tells us that we can compute
∫

R
f dA as either of the two corresponding iterated integrals, so

let’s think of R as horizontally simple. In this case, we find that
∫

R

f dA=

∫ 2

0

∫ 1

y/2

e−x2
d xd y.
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(a) Vertically simple: y varies from 0 to 2x (b) Horizontally simple: x varies from y/2 to 1

Figure 2.2: The triangle with vertices (0, 0), (1,0), and (1, 2) is
both vertically and horizontally simple.

But this isn’t particularly helpful, since e−x2 has no elementary antiderivative. On the other hand, thinking of
R as vertically simple leads us to write

∫

R

f dA=

∫ 1

0

∫ 2x

0

e−x2
d yd x =

∫ 1

0

2xe−x2
d x =

∫ 1

0

e−udu= 1− e−1.

The penultimate equality is obtained using the substitution u= x2. So while Fubini’s theorem tells us that the
order of integration is unimportant as an abstract matter, order is often very important as a practical matter.

Because we’re all so very talented when it comes to computing single-variable integrals, the most difficult
part of computing a multiple integral will often be accurately expressing it as an iterated integral. Let’s finish
today with an example for a function of three variables.
Example 2.12. Consider the tetrahedron R in R3 with vertices (a, 0, 0), (0, b, 0), and (0, 0, c), as seen in Figure
2.3. Given a sufficiently nice function f , we can use Fubini’s theorem to produce six different iterated integrals
which compute the value of

∫

R
f dV . We get a different iterated integral for each choice of ordering for the

variables x , y, and z.

Figure 2.3: A tetrahedron bounded by the (orange) plane
bcx + ac y + abz = abc, as well as the coordinate planes.
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For instance, say we want to write
∫

R

f dV =

∫ x+

x−

∫ y+(x)

y−(x)

∫ z+(x ,y)

z−(x ,y)

f (x , y, z)dzd yd x ,

for some functions y−(x)≤ y+(x) and z−(x , y)≤ z+(x , y) and some constants x− ≤ x+. Notice that the limits
of integration for each integral are allowed to depend only on those variables which are integrated "further
out." So the innermost integral has bounds depending on both x and y, while the bounds of the outermost
integral are constant. We can determine our bounds of integration by working from the outside in. We first
ask what range of x-values are seen in our region. This is easy: x is allowed to range from 0 to a, so x− = 0
and x+ = a. Next, for a given x-value, what values may y attain? Consider the x = constant slice seen in
Figure 2.3. Certainly y is allowed to be as small as 0 (here we are assuming that a, b, c > 0); at the other
extreme, y can be as large as b− b

a x (when z = 0). Finally, we move to the innermost integral. Here we know
the values of x and y and ask the values over which z is allowed to range. This is depicted by the vertical line
in Figure 2.3. The smallest value achieved by z is 0, while the largest is on the plane

bcx + ac y + abz = abc,

and thus corresponds to z = c − c
a x − c

b y. Altogether, we’ve found that we can write the tetrahedron R as

R=







0≤ x ≤ a
(x , y, z) : 0≤ y ≤ b− (b/a)x

0≤ z ≤ c − (c/a)x − (c/b)y







.

From this it follows that
∫

R

f dV =

∫ a

0

∫ b−(b/a)x

0

∫ c−(c/a)x−(c/b)y

0

f (x , y, z)dzd yd x .

Now say we want (for whatever reason) to integrate against y first, then x , and then z. In order to obtain
an iterated integral of this form, we need to write

R=







z− ≤ z ≤ z+
(x , y, z) : x−(z)≤ x ≤ x+(z)

y−(x , z)≤ y ≤ y+(x , z)







,

for some constants z− ≤ z+ and functions x−(z) ≤ x+(z) and y−(x , z) ≤ y+(x , z). As above, we can argue
geometrically to write

∫

R

f dV =

∫ c

0

∫ a−(a/c)z

0

∫ b−(b/a)x−(b/c)z

0

f (x , y, z)d yd xdz.

Exercise 2.13. Express
∫

R
f dV as an iterated integral in four other ways.

2.3 Day 6: Fubini’s theorem in action

Goals

By the end of today’s class, we should be able to do the following.
1. Use Fubini’s theorem to evaluate multiple integrals.
2. Use multiple integrals to compute volumes, centroids, and moments of inertia.

Today will be devoted to examples of using Fubini’s theorem to evaluate multiple integrals. In the course
of these examples, we will also encounter a few applications of multiple integrals.
Example 2.14. Let W be the region in the first octant of R3 bounded by the plane 3x + 4y + 2z = 12, the
plane x + 2y = 3, and the parabolic cylinder y2 = x . Find the volume of W .
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x

y

y2 = x
x + 2y = 3

Figure 2.4: The z-independent conditions of Example 2.14.

Solution. Yikes. We have three equalities that we need to turn into inequalities:

3x + 4y + 2z = 12, x + 2y = 3, y2 = x .

Additionally, we know that x , y, z ≥ 0, since W lies in the first octant of R3. Perhaps the best observation we
can start with is that the last two equalities depend only on x and y, so we can think about these in the
x y-plane. See Figure 2.4.

Notice that the region D in the first quadrant of R2 bounded by y2 = x and x + 2y = 3 is horizontally
simple. When these two curves meet, we have y2 +2y = 3, so the maximum value y is allowed to take in D is
y = 2. Once we’ve chosen a value for y (as indicated by the dashed gray line in Figure 2.4), x varies from a
lower bound of y2 to an upper bound of 3− 2y. Altogether, we may write

D = {(x , y) : 0≤ y ≤ 2, y2 ≤ x ≤ 3− 2y}.

We now have bounds for all but our innermost integral. Namely, we have
∫

W

f dV =

∫ 2

0

∫ 3−2y

y2

∫ z+(x ,y)

z−(x ,y)

f (x , y, z)dzd xd y,

for some z−(x , y)≤ z+(x , y). We can determine z− and z+ by enforcing the bound 3x + 4y + 2z = 12. Since z
is bounded below by the x y-plane, this plane gives an upper bound. Rearranging, we find that

0≤ z ≤ 6−
3
2

x − 2y.

At last, we can compute the volume of W :

vol(W ) =

∫

W

1dV =

∫ 2

0

∫ 3−2y

y2

∫ 6−(3/2)x−2y

0

1dzd xd y

=

∫ 2

0

∫ 3−2y

y2

�

6−
3
2

x − 2y
�

d xd y

=

∫ 2

0

�

6x −
3
4

x2 − 2x y
�3−2y

y2
d y

=

∫ 2

0

�

45
4
− 9y − 5y2 + 2y3 +

3
4

y4
�

d y

=
�

45
4

y −
9
2

y2 −
5
3

y3 +
1
2

y4 +
3
20

y5
�2

0

=
119
30
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Definition. Let f : R→ R be an integrable function on a compact region R of Rn. Then the average
value of f over R is defined to be the value

f =
1

vol(R)

∫

R

f dV.

Example 2.15. Suppose that the temperature in degrees Celsius at a point (x , y) on a flat metal plate is
T (x , y) = 5x y + x2, where x and y are in meters. Find the average temperature of the box [0, 2]× [−2,2].
Solution. The volume (i.e., area) of our box R is 2× 4= 8, so we need to compute the integral

∫

R
T dA. But

this is pretty straightforward:
∫

R

T dA=

∫ 2

0

∫ 2

−2

(5x y + x2)d yd x =

∫ 2

0

�

5
2

x y2 + x2 y
�2

−2
d x

=

∫ 2

0

4x2d x =
�

4
3

x3
�2

0

=
32
3

.

So the average temperature of the box R is T = 1
8 ·

32
3 =

4
3

.

Definition. Let R be a compact region in Rn. The centroid or barycenter of R is the arithmetic mean
position of all points in R. In coordinates, the centroid is given by x = (x1, . . . , xn), where

x i =
1

vol(R)

∫

R

x i dV

for 1 ≤ i ≤ n. If R has density function ρ : R→ [0,∞), then the center of mass of R is the arithmetic
mean position of all points, weighted by ρ. The coordinates of the center of mass are given by

x i =
1

mass(R)

∫

R

ρ(x1, . . . , xn)x i dV

for 1≤ i ≤ n.

Exercise 2.16. Determine conditions on the density function ρ under which the centroid of R is also its
center of mass.
Example 2.17. Locate the centroid of the region described by xn ≤ y ≤ 1, 0 ≤ x ≤ 1. What is the limiting
position of the centroid as n→∞?
Solution. Let’s call the region Rn. Per the description, this region is vertically simple, and its volume is given
by

vol(Rn) =

∫ 1

0

∫ 1

xn

1d yd x =

∫ 1

0

(1− xn)d x =
�

x −
1

n+ 1
xn+1

�1

0
= 1−

1
n+ 1

=
n

n+ 1
.

The x-coordinate of the centroid is then

x =
n+ 1

n

∫ 1

0

∫ 1

xn

xd yd x =
n+ 1

n

∫ 1

0

(1− xn)xd x

=
n+ 1

n

�

1
2

x2 −
1

n+ 2
xn+2

�1

0
=

n+ 1
n

�

1
2
−

1
n+ 2

�

=
n+ 1

n
n

2(n+ 2)
=

n+ 1
2(n+ 2)

.
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At the same time, the y-coordinate of the centroid is

y =
n+ 1

n

∫ 1

0

∫ 1

xn

yd yd x =
n+ 1

n

∫ 1

0

�

1
2

y2
�1

xn
d x

=
n+ 1

n

∫ 1

0

�

1
2
−

1
2

x2n
�

d x =
n+ 1

n

�

1
2

x −
1

2(2n+ 1)
x2n+1

�1

0

=
n+ 1

n
n

2n+ 1
=

n+ 1
2n+ 1

.

So the centroid is (x , y) =
�

n+ 1
2(n+ 2)

,
n+ 1

2n+ 1

�

. As n→∞, this centroid limits to
�

1
2

,
1
2

�

. Notice that as

n→∞, our region tends toward the box [0,1]× [0,1], so the centroid (1/2,1/2) checks out.
Example 2.18. Find the mass and center of mass of the cube

B := {(x , y, z) : 0≤ x , y, z ≤ a},

assuming that this cube has density function ρ(x , y, z) = a− x , where a > 0 is some positive number.
Solution. The mass of B is given by

mass(B) =

∫

B

ρdV =

∫ a

0

∫ a

0

∫ a

0

(a− x)dzd yd x =

∫ a

0

a2(a− x)d x

= a2
�

ax −
1
2

x2
�a

0
= a2(a2 −

1
2

a2) =
1
2

a4.

We can find the center of mass one coordinate at a time:
∫

B

ρxdV =

∫ a

0

∫ a

0

∫ a

0

(a− x)xdzd yd x =

∫ a

0

a2(a− x)xd x

= a2
�

a
2

x2 −
1
3

x3
�a

0
= a2

�

1
2

a3 −
1
3

a3
�

=
1
6

a5,

so x =
�

1
6 a5

�

/
�

1
2 a4

�

= 1
3 a. Next,

∫

B

ρ ydV =

∫ a

0

∫ a

0

∫ a

0

(a− x)ydzd xd y =

∫ a

0

∫ a

0

a(a− x)yd xd y

=

∫ a

0

�

a
�

ax −
1
2

x2
�

y
�a

0
d y =

∫ a

0

1
2

a3 yd y =
�

1
4

a3 y2
�a

0
=

1
4

a5,

so y =
�

1
4 a5

�

/
�

1
2 a4

�

= 1
2 a. Symmetrically, z = 1

2 a. So the center of mass of B is
�

1
3

a,
1
2

a,
1
2

a
�

.

Example 2.19. Set up (but do not evaluate) an integral which computes the x-coordinate of the centroid of
an octant of a solid sphere of radius R centered at the origin in R3.
Solution. For clarity, let’s write the octant as

W = {(x , y, z) : 0≤ x , y, z, x2 + y2 + z2 ≤ R2}.

Since we need to compute integral over W , we start by rewriting W in a form amenable to integration:

W =







0≤ x ≤ R
(x , y, z) : 0≤ y ≤

p
R2 − x2

0≤ z ≤
p

R2 − x2 − y2







.

Now we could compute vol(W ) as an integral, but that sounds unnecessarily annoying. We know that the
volume of a sphere is 4

3πR3, so vol(W ) = 1
6πR3. Next, let’s set up

∫

W
xdV .

∫

W

xdV =

∫ R

0

∫

p
R2−x2

0

∫

p
R2−x2−y2

0

xdzd yd x
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So

x =
1

vol(W )

∫

W

xdV =
6
π

∫ R

0

∫

p
R2−x2

0

∫

p
R2−x2−y2

0

xdzd yd x .

This integral would be a pain to evaluate; next week we’ll find that it’s much easier to evaluate in a different
coordinate system.

Definition. Let R be a compact region in Rn whose density at ~x ∈ R is given by ρ(~x), and let L be a
straight line in Rn. The moment of inertia of R about L is given by

IL =

∫

R

ρD2dV,

where D : R→ [0,∞) measures the distance from L.

Example 2.20. Find the moment of inertia of the solid cylinder

C := {(x , y, z) : x2 + y2 ≤ a2, 0≤ z ≤ h}

about the z-axis, where a, h> 0 are positive numbers.
Solution. Because we aren’t given a density function, we assume that ρ ≡ 1. Next, for any point (x , y, z) ∈ C ,
the distance from (x , y, z) to the z-axis is given by D(x , y, z) =

p

x2 + y2. So the relevant moment of inertia is
computed as

Iz =

∫

C

(x2 + y2)dV.

Using Fubini’s theorem, we compute this as an iterated integral:

Iz =

∫ h

0

∫ a

−a

∫

p
a2−x2

−
p

a2−x2

(x2 + y2)d yd xdz =

∫ h

0

∫ a

−a

�

x2 y +
1
3

y3
�

p
a2−x2

−
p

a2−x2
d xdz

=

∫ h

0

∫ a

−a

1
3
(a2 − x2)3/2d xdz =

∫ a

−a

∫ h

0

1
3
(a2 − x2)3/2dzd x

=

∫ a

−a

h
3
(a2 − x2)3/2d x .

Notice that we used the penultimate equality to swap the order of integration. You should be able to use your

single-variable integration skills to show that this last integral evaluates to 1
8

a4hπ , but it’s not very fun.

Again, our life will be made easier when we have access to other coordinate systems.
Example 2.21. For any n≥ 0, the standard n-simplex is the region

∆n :=

¨

(t1, . . . , tn) ∈ Rn :
n
∑

i=1

t i ≤ 1 and t1, . . . , tn ≥ 0

«

.

Use multiple integration3 to find a formula for the volume of ∆n, for all n≥ 1.
Solution. We could jump straight to computing vol(∆n), for an arbitrary n, without too much trouble, but
let’s start by considering the n= 1, n= 2, and n= 3 cases on their own. First,

∆1 = {t1 ∈ R : t1 ≤ 1 and t1 ≥ 0} .

Computing the volume here is easy enough: we simply have

vol(∆1) =

∫ 1

0

1d t1 = 1.

3This is probably not the easiest way to find this volume, but then we didn’t sign up for 32BH to do things the easy way.
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Figure 2.5: Cutting the 3-simplex ∆3 yields a 2-simplex t1∆
2.

Next, there’s the 2-simplex

∆2 =
�

(t1, t2) ∈ R2 : t1 + t2 ≤ 1 and t1, t2 ≥ 0
	

=
�

(t1, t2) ∈ R2 : 0≤ t1 ≤ 1,0≤ t2 ≤ 1− t1

	

,

which has volume

vol(∆2) =

∫ 1

0

∫ 1−t1

0

1d t2d t1 =

∫ 1

0

(1− t1)d t1 =
�

t1 −
1
2

t2
1

�1

0
=

1
2

.

For our last concrete example, we have the 3-simplex

∆3 =
�

(t1, t2, t3) ∈ R3 : t1 + t2 + t3 ≤ 1 and t1, t2, t3 ≥ 0
	

=
�

(t1, t2, t3) ∈ R3 : 0≤ t1 ≤ 1,0≤ t2 ≤ 1− t1, 0≤ t3 ≤ 1− t1 − t2

	

,

so

vol(∆3) =

∫ 1

0

∫ 1−t1

0

∫ 1−t1−t2

0

1d t3d t2d t1 =

∫ 1

0

∫ 1−t1

0

(1− t1 − t2)d t2d t1

=

∫ 1

0

�

t2 − t1 t2 −
1
2

t2
2

�1−t1

0
d t1 =

∫ 1

0

�

(1− t1)− t1(1− t1)−
1
2
(1− t1)

2
�

d t1

=

∫ 1

0

1
2
(t1 − 1)2d t1 =

�

1
6
(t1 − 1)3

�1

0
=

1
6

.

Here’s an interesting observation: in the above computation, the outermost integral has t1 as its variable. If
we cut the 3-simplex ∆3 with the plane t1 = c, where c is some constant, we get a scaled copy c∆2 of the
standard 2-simplex. See Figure 2.5. Now we know that vol(∆2) = 1

2 , so we should have vol(c∆2) = 1
2 c2. This

is because volume in Rn scales as
vol(cK) = cn vol(K), (2.6)

where K is some compact region.
Exercise 2.22. Prove equation 2.6.

So we can compute vol(∆3) by integrating the function 1
2 t2

1 as t1 varies from 0 to 1:

vol(∆3) =

∫ 1

0

1
2

t2
1d t1 =

�

1
6

t3
1

�1

0
=

1
6

.
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Completely analogously, we can find the volume of ∆4:

vol(∆4) =

∫ 1

0

1
6

t3
1d t1 =

�

1
24

t4
1

�1

0
=

1
24

.

Perhaps by now you’ve noticed the pattern vol(∆n) = 1
n! . We can prove this by mathematical induction. We

already have several base cases, so let’s assume that vol(∆n) = 1
n! for some n≥ 1 and show that vol(∆n+1) =

1
(n+1)! . Indeed,

vol(∆n+1) =

∫ 1

0

1
n!

tn
1 d t1 =

�

1
(n+ 1)!

tn+1
1

�1

0
=

1
(n+ 1)!

,

verifying our formula vol(∆n) =
1
n!

.
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3 Week 3
Now that we have Fubini’s theorem, we can rewrite our multiple integrals as iterated integrals, and then
evaluate. But when the region over which we’re integrating is not a box, our bounds of integration can get
messy. We saw this in some examples last week, when our domains of integration were cylindrical or spherical.
Just as discs in R2 are more easily written in polar coordinates, we want this week to introduce coordinate
systems on R3 — cylindrical coordinates and spherical coordinates — in which we may more easily express
cylinders and spheres. Our real goal is to integrate in these coordinate systems, so the main feature of this
week is the change of variables theorem, which will allow us to compute integrals in any coordinate system
we can cook up.

3.1 Day 7: Change of variables

Goals

By the end of today’s class, we should be able to do the following.
1. Explain how multiple integrals can be pulled back via a C1-transformation Φ: Rn→ Rn.
2. Give a geometric sketch of why the change of variables theorem should be true for double

integrals.
3. Use the change of variables theorem and polar coordinates to evaluate double integrals.

3.1.1 Integration in polar coordinates

When defining the Riemann integral of a function f : D→ R of several variables, we partitioned the domain
D ⊂ Rn into subboxes — subsets of the form

{(x1, . . . , xn) : ai ≤ x i ≤ bi , for 1≤ i ≤ n}.

For instance, in R2 a box is simply a rectangle. But this is because we’re using rectangular coordinates. There
are other coordinate systems we could use on R2, and boxes in these coordinate systems will not necessarily
be rectangles. For instance, recall polar coordinates on R2. Each point (x , y) in R2 can be written as

(x , y) = (r cosθ , r sinθ )

for some r ∈ R≥0 and θ ∈ R. (Of course, r and θ are not uniquely defined, but let’s not worry about this just
yet.) A polar box then has the form

{(r cosθ , r sinθ ) : r1 ≤ r ≤ r2,θ1 ≤ θ ≤ θ2},

for some constants1 r2 > r1 ≥ 0 and θ2 > θ1. If we wanted to define the Riemann integral using polar
coordinates, we would think about partitioning a domain D into polar boxes, and then consider lower and
upper sums as before:

L( f ,P) :=
∑

J

mJ ( f )area(J) and U( f ,P) :=
∑

J

MJ ( f )area(J).

The only difference here is that, since each J is a polar box, its area is somewhat more annoying to compute
than in the rectangular case.

Before we proceed, let’s make it clear why thinking about the Riemann integral in polar coordinates is
something worth doing. To this end, consider the unit disc D in R2:

D = {(x , y) : x2 + y2 ≤ 1}.

This region is both vertically simple and horizontally simple, so we can write it as

D = {(x , y) : −1≤ x ≤ 1,−
p

1− x2 ≤ y ≤
p

1− x2}

1I don’t really care to think about strange cases here, so we assume that r2 > r1 and θ2 > θ1. We could allow r2 ≤ r1 and θ2 ≤ θ1, so
that a polar box could have area zero (or even be empty), but let’s not worry about this.
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Figure 3.1: As the rectangle [0,1]× [0,2π] is transformed into
the unit disc, its subboxes are distorted.

or
D = {(x , y) : −1≤ y ≤ 1,−

p

1− y2 ≤ x ≤
p

1− y2}.

We can then use Fubini’s theorem to compute a double integral over D as an iterated integral:
∫

D

f dA=

∫ 1

−1

∫

p
1−x2

−
p

1−x2

f (x , y) d y d x =

∫ 1

−1

∫

p
1−y2

−
p

1−y2

f (x , y) d x d y.

Of course, the term p1− x2 or
p

1− y2 could make our iterated integral computation less than pleasant. But
notice that D is a polar rectangle:

D = {(r cosθ , r sinθ ) : 0≤ r ≤ 1,0≤ θ ≤ 2π}.

So, assuming some sort of Fubini’s theorem holds for Riemann integration in polar coordinates, it seems like
∫

D
f dA ought to be

∫ 2π

0

∫ 1

0

f (r cosθ , r sinθ ) dA.

Notice that we’ve written dA instead of drdθ ; this is because we haven’t yet sorted out the issue of the area of
a polar box. A more onerous example is given by a quarter of an annulus:

R= {(x , y) : 1≤ x2 + y2 ≤ 4, y ≥ |x |}.

This region is neither vertically nor horizontally simple (you should plot the region), so would be pretty
annoying to integrate over in rectangular coordinates. But in polar coordinates we have

R= {(r cosθ , r sinθ ) : 1≤ r ≤ 2,π/4≤ θ ≤ 3π/4},

meaning that R is a polar rectangle. Our main motivation for integrating in non-rectangular coordinate
systems is that doing so will allow us to treat non-rectangular regions as rectangles — making for iterated
integrals which are easier to compute.
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3.1.2 Coordinate systems

Based on the informal discussion above, it sounds like we have a shot at interpreting the Riemann integral in
polar coordinates if we just compute the area of a polar rectangle. But, being mathematicians, we’d really
like to solve this problem for any coordinate system. Let’s first say what we mean by coordinate system, a
notion we will formalize via maps Φ: Rn→ Rn. The definition of coordinate system requires some background
vocabulary first.

Definition. We say that a differentiable map Φ: A→ Rn, defined on a subset A of Rn is a C1-mapping if
all of its partial derivatives are continuous. We denote by Φ∗ the n× n matrix of all first-order partial
derivatives of Φ:

Φ∗ :=







∂ φ1
∂ x1

· · · ∂ φ1
∂ xn... . . . ...

∂ φn
∂ x1

· · · ∂ φn
∂ xn






,

where
Φ(x1, . . . , xn) = (φ1(x1, . . . , xn), . . . ,φn(x1, . . . , xn)).

We call Φ∗ the Jacobian matrix2associated to Φ.

Example 3.1. We can define a differentiable map Φ: R2→ R2 via

Φ(r,θ ) := (r cosθ , r sinθ ).

Then
Φ∗ =

�

cosθ −r sinθ
sinθ r cosθ

�

.

Notice that Φ∗ is a function of r and θ . To be clear about which variables represent which copy of R2, we will
often denote this map by Φ: R2

r,θ → R
2
x ,y .

We need a little more vocabulary before defining coordinate systems.

Definition. The determinant of a 2× 2 matrix is given by the formula

det
�

a b
c d

�

= ad − bc.

For n≥ 3, we may define the determinant of an n× n matrix recursively:

det







a11 · · · a1n
... . . . ...

an1 · · · ann






=

n
∑

i=1

(−1)i+nain det



















a11 · · · a1(n−1)
... · · ·

...
cai1

. . .
Øai(n−1)

... · · ·
...

an1 · · · an(n−1)



















,

where the notation cai j means we omit the entry ai j .

Remark. This is not my favorite way to define the determinant, but it will suffice for now. Today we’ll focus
fairly exclusively on the case n= 2, and hopefully you recall the n= 3 case from computing cross products.
Exercise 3.2. Prove that

det
�

a b
c d

�

gives the signed area of the parallelogram in R2 spanned by the vectors (a, c)T and (b, d)T .

2Sometimes I might slip and just call Φ∗ the Jacobian of Φ. I’ll try to call this the Jacobian matrix, though, because a lot of textbooks
reserve the name ‘Jacobian’ for the determinant of Φ∗.
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Definition. If Φ: A→ Rn is a C1-mapping defined on a subset A of Rn, then we call the determinant
detΦ∗ the Jacobian determinant3of Φ.

Alright, one more simple definition before we say what we mean by coordinate system.

Definition. Let B ⊂ Rn be a (not-necessarily-compact) box of the form

B = I1 × I2 × · · · × In,

where each Ii is an interval of one of the following forms:

Ii = (ai , bi) or Ii = (ai , bi] or Ii = [ai , bi) or Ii = [ai , bi].

The interior of Ii is �Ii := (ai , bi), and the interior of B is
�B := �I1 × �I2 × · · · × �In.

Note: We don’t require the intervals Ii to be bounded, so, read correctly, this definition covers cases like
Ii = (−∞, bi]. Just don’t write something silly like [−∞, bi).

A coordinate system will me a map whose domain is a box, and we require the map to behave particularly
nicely on the interior of the box. The basic idea is that the boundary (i.e., the non-interior points) doesn’t
have any volume, so if Φ behaves badly there, it shouldn’t affect the definition of the integral.

Definition. Given an open subset A⊂ Rn, a coordinate system on A is a C1-mapping Φ: R→ Rn such
that
(1) R is a box in Rn;
(2) A⊂ Φ(R);
(3) Φ is injective on the interior of R;
(4) detΦ∗ 6= 0 on the interior of R.

Example 3.3. The map Φ: R2
r,θ → R

2
x ,y defined above is not a coordinate system, because it’s not injective —

in fact, every point in R2
x ,y has infinitely many preimages under Φ. However, the restriction

Φ: [0,∞)r × [0, 2π]θ → R2
x ,y

is a coordinate system on R2. Indeed:
(1) [0,∞)× [0,2π] is a box;
(2) R2 ⊂ Φ([0,∞)× [0, 2π]);
(3) the restriction Φ: (0,∞)× (0,2π)→ R2 is injective;
(4) we have

detΦ∗ = det
�

cosθ −r sinθ
sinθ r cosθ

�

= r cos2 θ + r sin2 θ = r,

which is nonzero on the interior of (0,∞)× (0, 2π).
Example 3.4. The map Φ: [1, 3]u × [−1, 1]v → R2

x ,y defined by
Φ(u, v) := (u cosh(v/2), u sinh(v/2))

is a coordinate system on its image Φ(R). Recall that the hyperbolic sine and cosine functions satisfy
cosh2 v − sinh2 v = 1, and

d
dv

cosh v = sinh v,
d
dv

sinh v = cosh v.

One can check that Φ is injective on all of R= [1,3]× [−1, 1] (not just its interior), and we also have

detΦ∗ = det

�

cosh(v/2) 1
2 u sinh(v/2)

sinh(v/2) 1
2 u cosh(v/2)

�

=
1
2

u cosh2(v/2)−
1
2

u sinh2(v/2) =
1
2

u.

3Many textbooks just call detΦ∗ the Jacobian of Φ, but we’ll call it the Jacobian determinant, to distinguish it from the matrix Φ∗.
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(a) A ∆u×∆v rectangle based at (u0, v0). (b) The parallelogram spanned by ∆u ∂Φ∂ u and ∆v ∂Φ∂ v .

Figure 3.2: The transformation Φ: [a, b]u × [c, d]v → R2
x ,y gives a

coordinate system on its image.

So detΦ∗ 6= 0 on R, and Φ is a coordinate system on its image. This coordinate system is depicted in Figure 3.2.

3.1.3 Change of variables

Now that we have a more general notion of coordinate system, we can attempt to define integration for any
coordinate system on (a subset of) Rn. As discussed in Section 3.1.1, we may partition the region R over
which we want to integrate into pseudoboxes4

J := {Φ(u1, . . . , un) : ui
0 < ui < ui

1, 1≤ i ≤ n},

and then define the lower and upper sums over our partition to be

L( f ,P) :=
∑

J

mJ ( f )vol(J) and U( f ,P) :=
∑

J

MJ ( f )vol(J).

The primary difficulty, then, is determining the volumes vol(J). A key difference between a pseudobox and a
standard box in Rn is that the volume of a pseudobox is not a function of its side lengths alone. For instance,
the polar rectangles

R1 := {(r cosθ , r sinθ ) : 0< r < 1/4, 0< θ < π/4}

and
R2 := {(r cosθ , r sinθ ) : 3/4< r < 1, 0< θ < π/4}

each have r-side length 1/4 and θ -side length π/4, but area(R1) =
π

128 , while area(R2) =
7π
128 — a seven-fold

difference in area!

Rather than attempt to compute the volume of a pseudobox exactly — something that’s easy enough to
do in polar coordinates, but which we don’t want to do for an arbitrary Φ — we will obtain a first-order
approximation for this volume. Heuristically, this approximation should be good enough to compute integrals
in our new coordinate system, because as the side lengths of our pseudobox shrink to 0, the error in our
approximation will tend to 0 even more quickly. That is, if our side lengths are on the order of ε > 0, then the
error in our volume approximation should be on the order of ε2.

Let’s consider the pseudobox J which is the image of [u0, u0 +∆u]× [v0, v0 +∆v]. Our first approximation
to J is by a quadrilateral: since J has corners at

Φ(u0, v0), Φ(u0 +∆u, v0), Φ(u0, v0 +∆v), and Φ(u0 +∆u, v0 +∆v),

4As far as I’m aware, this language is not at all common. In fact, I just made it up.
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we approximate J by the quadrilateral Q with these four corners. We don’t give a formal justification for
this approximation, but notice that this approximation is accurate for pseudoboxes with straight line edges
— making it a reasonable first-order approximation for a pseudobox whose edges are smooth curves. Now
computing the area of Q is something we’re still too lazy to do, so let’s approximate Q by a parallelogram.
Namely, we can use Taylor polynomials to approximate three of the four vertices of Q:

Φ(u0 +∆u, v0) = Φ(u0, v0) +∆u
∂Φ

∂ u
(u0, v0) +

1
2
(∆u)2

∂ 2Φ

∂ u2
(u0, v0) + · · ·

≈ Φ(u0, v0) +∆u
∂Φ

∂ u
(u0, v0)

Φ(u0, v0 +∆v) = Φ(u0, v0) +∆v
∂Φ

∂ v
(u0, v0) +

1
2
(∆v)2

∂ 2Φ

∂ v2
(u0, v0) + · · ·

≈ Φ(u0, v0) +∆v
∂Φ

∂ v
(u0, v0)

Φ(u0 +∆u, v0 +∆v) = Φ(u0, v0) +∆u
∂Φ

∂ u
(u0, v0) +∆v

∂Φ

∂ v
(u0, v0) + · · ·

≈ Φ(u0, v0) +∆u
∂Φ

∂ u
(u0, v0) +∆v

∂Φ

∂ v
(u0, v0).

With these approximations, Q is approximated by the parallelogram spanned by the vectors ∂Φ
∂ u (u0, v0) and

∂Φ
∂ v (u0, v0) based at (u0, v0). See Figure 3.2.

We can now use Exercise 3.2 to estimate the area of a pseudobox with side lengths ∆u and ∆v. The area
of the pseudobox J which is the image under Φ of [u0, u0 +∆u]× [v0, v0 +∆v] is approximately

area(J)≈ |detΦ∗(u0, v0)|∆u∆v ,

provided ∆u> 0 and ∆v > 0 are small. By similar reasoning we may obtain the analogous approximation in
any dimension. That is, if Φ: R2

u1 ,...,un → R2
x1 ,...,xn is a coordinate system, then

vol(Φ([u1
0, u1

0 +∆u1]× · · · × [un
0, un

0 +∆un]))≈
�

�detΦ∗(u
1
0, . . . , un

0)
�

� |∆u1 · · ·∆un ,

provided ∆ui > 0 is small, for 1 ≤ i ≤ n. So the quantity |detΦ∗| gives some sort of "fudge factor" for our
volume computations.

Where does this leave us? Well, assuming that |detΦ∗| doesn’t vary too much over each pseudobox — and
with a very fine partition it shouldn’t — we can approximate our lower sum as

L( f ,P) =
∑

J

mJ ( f )vol(J)≈
∑

J

mJ ( f )|detΦ∗|∆u1 · · ·∆un

≈
∑

J

mJ ( f · |detΦ∗|)vol([u1
0, u1

0 +∆u1]× · · · × [un
0, un

0 +∆un])

and obtain a similar approximation for the upper sum. Taking the supremum over all lower sums and the
infimum over all upper sums, we should have

∫

R

f dV =

∫

D

( f ◦Φ)|detΦ∗| dV.

The following result, which we will not rigorously prove, verifies that this is the case.

Theorem 3.5: The change of variables theorem

Let K ⊂ Rn be a compact and connected set having boundary of volume zero. Let A⊂ Rn be an open
superset of K, and let Φ: A→ Rn be a coordinate system on its image. Let f : Φ(K)→ R be a continuous
function. Then

∫

Φ(K)

f dV =

∫

K

( f ◦Φ)|detΦ∗| dV.
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Remark.
1. Because Φ(K) is compact and f : Φ(K)→ R is continuous, Theorem 1.23 guarantees that f is integrable

over Φ(K) under the hypotheses of Theorem 3.5.
2. On the left, dV indicates that we’re integrating against volume in the codomain of Φ, and on the right

dV indicates that we’re integrating against volume in the domain of Φ. Theorem 3.5 is telling us that
these two "volume forms" are related to each other by the scale factor detΦ∗. We will attempt to make
this more precise later in the quarter.

3. Notice that the domain of f lies in the image of Φ. A typical use of Theorem 3.5 begins with a function
f : R2

x ,y → R and produces a coordinate system Φ: R2
u,v → R

2
x ,y . We then use Φ to "pull the integral back"

from a complicated region in the x y-plane to a rectangle or other simple region in the uv-plane.

3.1.4 Back to polar coordinates

Remember how we started today: searching for a way to integrate with respect to polar coordinates. Now
that we know how to integrate in an arbitrary coordinate system, we can recover the case of polar coordinates.
Theorem 3.5 tells us that if Φ denotes the polar coordinate system on R2 and R ⊂ [0,∞)× [0, 2π] is a region
in the rθ -plane, then

∫

Φ(R)

f dA=

∫

R

( f ◦Φ)r dr dθ , (3.1)

since Example 3.3 tells us that |detΦ∗|= r. Let’s use Equation 3.1 to compute a value we already know: the
area of a semicircular disc.
Remark. I now realize that I’ve been pretty inconsistent about whether we use R to denote a region in the
domain or codomain of a coordinate system. I think I’m sometimes thinking of R as standing for "range," and
thus putting it in the codomain of Φ. But other times I’m thinking of R as standing for "rectangle," and putting
it in the domain. Hopefully this is not too confusing.
Example 3.6. Let’s compute the area of the semicircular disc D of radius 1 centered at the origin. That is,

D = {(x , y) : x2 + y2 ≤ 1, y ≥ 0}= {(r cosθ , r sinθ ) : 0≤ r ≤ 1,0≤ θ ≤ π},

so D is a polar rectangle. Concretely, D is the image under Φ of the rectangle

R= {(r,θ ) : 0≤ r ≤ 1, 0≤ θ ≤ π} ⊂ R2
r,θ .

From this it follows that

area(D) =

∫

D

1 dA=

∫

R

r dA=

∫ π

0

∫ 1

0

r dr dθ

=

∫ π

0

�

1
2

r2
�1

0
dθ =

∫ π

0

1
2

dθ =
π

2
,

as expected.
Remark. In a lot of multivariable calculus classes it’s popular to think of Equation 3.1 as telling us that
"dA= rdrdθ ." This is safe enough, provided we interpret the two sides of the equation correctly. Here dA
refers to area in R2

x ,y . In the rθ -plane, we have dAr,θ = drdθ , and we pick up the scale factor of r when we
move over to the x y-plane. So maybe a better way to think of this is dAx ,y = rdrdθ . Again, we’ll attempt to
give more precise meaning to all these symbols later in the term.

Here’s one more example, which we probably won’t have time to see in class.
Example 3.7. Let’s find the centroid of the unit-radius semicircular disc D considered above. First, let’s note
that, even though we’re going to use a coordinate change to do this, the coordinates of the centroid are given
by computing the average values of the rectangular coordinates of points in D. That is,

x :=

∫

D

x dA and y :=

∫

D

y dA.

35



Math 32BH Lecture Notes Week 3

Our coordinate system Φ need not preserve centroids. So we can’t expect Φ(r,θ ) to be (x , y). Understanding
this, let’s compute. We have

x =

∫

D

x dA=

∫

R

(r cosθ )r dA=

∫ π

0

∫ 1

0

r2 cosθ dr dθ

=

∫ π

0

�

1
3

r3 cosθ
�1

0
dθ =

∫ π

0

1
3

cosθ dθ =
1
3
[sinθ]π0 = 0.

Next,

y =

∫

D

y dA=

∫

R

(r sinθ )r dA=

∫ π

0

∫ 1

0

r2 sinθ dr dθ

=

∫ π

0

�

1
3

r3 sinθ
�1

0
dθ =

∫ π

0

1
3

sinθ dθ =
1
3
[− cosθ]π0 =

2
3

.

So the centroid of D has coordinates (0, 2
3 ).

3.2 Day 8: Change of variables, continued

Goals

By the end of today’s class, we should be able to do the following.
1. Use cylindrical coordinates and spherical coordinates to evaluate triple integrals.
2. Use the change of variables theorem with wisely-chosen transformations to evaluate multiple

integrals in any dimension.
3. In some cases, use the change of variables theorem with incomplete information. For instance,

apply the change of variables theorem when we have an expression for the inverse of a coordinate
system, but not for the coordinate system itself.

The plan for today is to see several examples of the change of variables theorem in action. In particular,
we will see two particularly important coordinate systems for R3: cylindrical coordinates and spherical
coordinates. Time permitting, we will discuss a situation in which we can apply the change of variables
theorem without an explicit expression for our coordinate system (unfortunately, time probably won’t permit).

3.2.1 Cylindrical coordinates

We start with an easy generalization of polar coordinates to R3: cylindrical coordinates. We write a point
(x , y, z) in this coordinate system by writing the point (x , y) in polar coordinates. That is,

Φ(r,θ , z) = (r cosθ , r sinθ , z).

As is the case for polar coordinates, r measures the distance between (x , y, z) and the z-axis (i.e., the distance
between (x , y) and the origin in the x y-plane), while θ measures the angle made by the vector (x , y)T and
the x-axis. This coordinate system is depicted in Figure 3.3a.

In order to integrate in cylindrical coordinates, we need to compute the Jacobian determinant. First, the
Jacobian matrix is

Φ∗ =





cosθ −r sinθ 0
sinθ r cosθ 0

0 0 1



 .

We compute the Jacobian determinant using cofactor expansion:

detΦ∗ = det





cosθ −r sinθ 0
sinθ r cosθ 0

0 0 1



= det
�

cosθ −r sinθ
sinθ r cosθ

�

= r.
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(a) Cylindrical coordinates (b) Spherical coordinates

Figure 3.3: Polar coordinates generalize to cylindrical and spher-
ical coordinates on R3

Of course this matches the Jacobian determinant for polar coordinates — not too surprising, since the
cylindrical coordinate system is just the result of crossing polar coordinates with z. So the change of variables
theorem tells us that

∫

Φ(R)

f dV =

∫

R

( f ◦Φ)|detΦ∗| dV =

∫

R

( f ◦Φ)r dV .

Example 3.8. Let W be the region in R3 bounded between the paraboloids z = x2+ y2−4 and z = 4− x2− y2.
Find the moment of inertia of W about the z-axis, assuming that W has uniform density ρ.
Solution. Here we have

W = {(x , y, z) : x2 + y2 − 4≤ z ≤ 4− x2 − y2},

and it should be clear that this region looks quite a bit nicer in cylindrical coordinates:

W = {(r cosθ , r sinθ , z) : r2 − 4≤ z ≤ 4− r2}.

Notice that W places no restriction on θ , so we’ll let θ vary from 0 to 2π. For the restriction on z to make
sense, we’ll need r2 − 4≤ 4− r2, which occurs only if r2 ≤ 2. So we’ll let r vary from 0 to 2. Now it shouldn’t
be too bad to integrate over W . In particular,

Iz =

∫

W

ρ · D2 dV =

∫ 2π

0

∫ 2

0

∫ 4−r2

r2−4

ρ · D2 ◦Φr dz dr dθ .

Finally, we notice that r measures the distance between a point and the z-axis, so (D ◦Φ)(r,θ , z) = r, and we
have

Iz =

∫ 2π

0

∫ 2

0

∫ 4−r2

r2−4

ρ · r3 dz dr dθ =

∫ 2π

0

∫ 2

0

�

ρr3z
�4−r2

r2−4
dr dθ

=

∫ 2π

0

∫ 2

0

ρr3(8− 2r2) dr dθ =

∫ 2π

0

�

ρ

�

2r4 −
2
6

r6
��2

0
dθ

=

∫ 2π

0

ρ

�

32−
64
3

�

dθ =
64
3
πρ .

By the way, we have a small reality check here. Moments of inertia should never be negative.
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r1

r2

h

Figure 3.4: A conical frustum with radii r1 > r2 and height h

Example 3.9. Find the volume of a (circular) conical frustum with radii r1 > r2 > 0 and height h. See
Figure 3.4.
Solution. For a lot of regions, we first express the region in rectangular coordinates and then translate the
conditions to our new coordinate system. This time let’s try to go directly to the cylindrical coordinates for
the frustum. Clearly there is no restriction on the angle θ , so we let θ vary from 0 to 2π. Next, it’s easy to see
that the upper bound for r depends linearly on z. When z = 0, r varies from 0 to r1, and when z = h, r varies
from 0 to r2. We can then interpolate linearly between these two ends. Concretely, the side of the frustum is
determined by

r − r1 =
r2 − r1

h− 0
(z − 0) ↔ r = r1 +

r2 − r1

h
z,

so we let r vary from 0 to r1 + (r2 − r1)z/h. Finally, z varies from 0 to h, so our frustum F can be written

F =







0≤ θ ≤ 2π
(r cosθ , r sinθ , z) : 0≤ z ≤ h

0≤ r1 + (r2 − r1)z/h







.

So we have

vol(F) =

∫

F

1 dV =

∫ 2π

0

∫ h

0

∫ r1+(r2−r1)z/h

0

r dr dz dθ

=

∫ 2π

0

∫ h

0

�

1
2

r2
�r1+(r2−r1)z/h

0
dz dθ =

1
2

∫ 2π

0

∫ h

0

�

r1 +
r2 − r1

h
z
�2

dz dθ

=
1
2

∫ 2π

0

�

1
3

�

r1 +
r2 − r1

h
z
�3 h

r2 − r1

�h

0

dθ =
1
6

∫ 2π

0

h
r2 − r1

�

r3
2 − r3

1

�

dθ

=
πh
3

r3
2 − r3

1

r2 − r1
=

πh
3
(r2

1 + r1r2 + r2
2 ) .

3.2.2 Spherical coordinates

The next generalization of polar coordinates to R3 is slightly more complicated. Given a point (x , y, z) in R3,
we can measure its distance from the origin via

ρ =
p

x2 + y2 + z2.

Just like r for polar coordinates, this gives us a radius. Unlike polar coordinates, however, we use two angles
to determine the direction in which (x , y, z) is pointing. We first have the azimuth, which is the angle made
by the vector (x , y, z)T with the z-axis. We denote the azimuth by ϕ, and by projecting (x , y, z) onto the
z-axis, we see that z = ρ cosϕ. It remains to determine the x- and y-components, so we project (x , y, z) to the
x y-plane to get (x , y). Since z = ρ cosϕ, one can check that the point (x , y) lies a distance ρ sinϕ from the
origin. If θ is the angle made by (x , y) with the x-axis (as it was before), then we should be able to convince
ourselves that

x = ρ sinϕ cosθ and y = ρ sinϕ sinθ .
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Altogether, spherical coordinates are determined via the transformation Φ: [0,∞)ρ × [0,2π]θ × [0,π]ϕ → R3

defined by
Φ(ρ,θ ,ϕ) = (ρ sinϕ cosθ ,ρ sinϕ sinθ ,ρ cosϕ) .

Example 3.10. Consider holding ρ constant while θ and ϕ vary. You should be able to convince yourself
that Φ(ρ,θ ,ϕ) will trace out a sphere of radius ρ. If we fix θ , but vary ρ and ϕ, we trace out a half-plane
with one edge on the z-axis. Fixing ϕ while ρ and θ run wild will produce a cone with vertex at the origin.

In order to apply the change of variables theorem using spherical coordinates, we’ll need to compute the
Jacobian determinant detΦ∗. We have

Φ∗ =





sinϕ cosθ −ρ sinϕ sinθ ρ cosϕ cosθ
sinϕ sinθ ρ sinϕ cosθ ρ cosϕ sinθ

cosϕ 0 −ρ sinϕ



 ,

so

detΦ∗ = cosϕ

�

�

�

�

−ρ sinϕ sinθ ρ cosϕ cosθ
ρ sinϕ cosθ ρ cosϕ sinθ

�

�

�

�

−ρ sinϕ

�

�

�

�

sinϕ cosθ −ρ sinϕ sinθ
sinϕ sinθ ρ sinϕ cosθ

�

�

�

�

= cosϕ(−ρ2 sinϕ cosϕ)−ρ sinϕ(ρ sin2ϕ)

= −ρ2 sinϕ(cos2ϕ + sin2ϕ) = −ρ2 sinϕ.

Notice that for any 0 ≤ ϕ ≤ π, sinϕ ≥ 0, so |detΦ∗| = ρ2 sinϕ. Then, according to the change of variables
theorem, we have

∫

Φ(R)

f dV =

∫

R

( f ◦Φ)|detΦ∗| dV =

∫

R

( f ◦Φ)ρ2 sinϕ dV ,

for any region R in [0,∞)ρ × [0,2π]θ × [0,π]ϕ.

Note. Going forward, you are free to apply the change of variables formula for polar coordinates, cylindrical
coordinates, and spherical coordinates without deriving detΦ∗ again each time.
Example 3.11. For any α ∈ (−π/2,π/2), let Wα denote the region which is above the cone z = tanα

p

x2 + y2

and inside the sphere of radius 1 centered at the origin in R3. Find the volume of Wα.
Solution. In rectangular coordinates we have

Wα = {(x , y, z) : tanα
p

x2 + y2 ≤ z, x2 + y2 + z2 ≤ 1}.

We can rewrite these conditions in spherical coordinates as

(tanα)ρ sinϕ ≤ ρ cosϕ and ρ ≤ 1.

The first condition simplifies to tanα ≤ cotϕ, which we can further rewrite as tanα ≤ tan(π2 −ϕ). Because
tan increases monotonically on (−π/2,π/2), this means that we have α ≤ π

2 −ϕ. So ϕ will vary from 0 to
π
2 −α. Altogether,

Wα =







0≤ θ ≤ 2π
Φ(ρ,θ ,ϕ) : 0≤ ρ ≤ 1

0≤ ϕ ≤ π
2 −α







,

so

vol(Wα) =

∫

Wα

1 dV =

∫ 2π

0

∫ 1

0

∫
π
2 −α

0

ρ2 sinϕ dϕ dρ dθ

=

∫ 2π

0

∫ 1

0

�

−ρ2 cosϕ
�
π
2 −α
0

dρ dθ =

∫ 2π

0

∫ 1

0

ρ2
�

1− cos
�π

2
−α

��

dρ dθ

= (1− sin (α))

∫ 2π

0

�

1
3
ρ3
�1

0
dθ = (1− sin (α))

∫ 2π

0

1
3

dθ

=
2π
3
(1− sin (α)) .

39



Math 32BH Lecture Notes Week 3

Notice that vol(W0) =
2π
3 , which checks out, since W0 is half of a ball of radius 1. On the other hand, as α

tends towards ±π/2, the cone z = tanα
p

x2 + y2 tends towards the z-axis. When α is headed to π/2, Wα is
getting smaller and smaller, and indeed limα→(π/2)− vol(Wα) = 0. At the other extreme, as α tends towards
−π/2, Wα is filling up more and more of the unit sphere, and we find that limα→(−π/2)+ vol(Wα) = 4π/3.

3.2.3 Transformations that go the wrong way

We can recap the change of variables theorem as follows: given a coordinate system Φ: D→ R, integrals over
R can be "pulled back" via Φ to integrals over D, and we pick up a scale factor of |detΦ∗|. Sometimes, however,
we’d really prefer to push our integrals rather than pull them. Specifically, instead of the coordinate system
Φ above, we might have its inverse5 Ψ : R→ D. We might want to move integrals from R to D, but find Φ to
difficult to compute explicitly. For this, the following two facts are helpful:

1. if Ψ = Φ−1, then Ψ∗ = Φ−1
∗ ;

2. if detΦ∗ 6= 0, then (detΦ∗)(detΦ−1
∗ ) = 1.

From these facts we see that the stretch factor |detΦ∗| is given by |detΨ∗|−1. This allows us to rewrite the
change of variables theorem as

∫

R

f dV =

∫

D

( f ◦Φ)|(detΨ∗) ◦Φ|−1 dV =

∫

D

( f |detΨ∗|−1) ◦Φ dV. (3.2)

Note that in the middle expression we precompose detΨ∗ with with Φ. This makes more sense if we assign
coordinate names. Say we’re working in two dimensions and our coordinate systems are

Φ: Du,v → Rx ,y and Ψ : Rx ,y → Ru,v .

Then detΨ∗ will be a function of x and y. But since we want to integrate over D, we need a function of u and
v — this is what we accomplish by precomposing with Φ.

The upshot is that, in sufficiently nice circumstances6, we can pull our integral back over Φ without ever
having an explicit formula for Φ. Let’s see this in action.
Example 3.12. Evaluate the integral

∫

R

x y dA,

where R is the region in the first quadrant that is enclosed by the hyperbolas x2− y2 = 1, x2− y2 = 4, and the
circles x2 + y2 = 9, x2 + y2 = 16.
Solution. The bounds for R are very suggestive of a transformation Ψ : Rx ,y → Du,v:

Ψ(x , y) := (x2 − y2, x2 + y2).

This allows us to write R as the image of a rectangle:
R= {Ψ−1(u, v) : 1≤ u≤ 4,9≤ v ≤ 16}.

In order to directly apply the change of variables theorem at this point, we would need to come up with an
expression for Φ= Ψ−1. Instead, let’s try to apply Equation 3.2. We have

Ψ∗ =
�

2x −2y
2x 2y

�

,

so detΨ∗ = 8x y. Now Equation 3.2 asks us to think about f ◦Φ and (detΨ∗) ◦Φ. Since we don’t know Φ, this
can be challenging. But the rightmost expression of Equation 3.2 explains how this will typically work out: we
first think about the product f |detΨ∗| in the coordinates of R, and then precompose with Φ. In this example
we have

f (x , y) · (detΨ∗(x , y))−1 = (x y)(8x y)−1 =
1
8

.

5Recall that coordinate systems are required to be injective on the interior of their domain, so, assuming that Φ(�D) =�R, we can invert
Φ on �R.

6Since we don’t have our hands on Φ, the nice circumstance is usually that the expression f |detΨ∗|−1 quickly simplifies to something
that’s easy to recognize in the coordinates of D.
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Of course precomposing the constant 1
8 with Φ will do nothing, so we have

∫

R

x y dA=

∫ 16

9

∫ 4

1

1
8

du duv = 7 · 16 ·
1
8
= 14 .

Finally, here’s an example of the same phenomenon in R3.
Example 3.13. Find the volume of the oblique parallelepiped that is bounded by the planes

x + y + 2z = ±3, x − 2y + z = ±2, and 4x + y + z = ±6.

Solution. Once again, our region suggest a transformation Ψ : Rx ,y,z → Du,v,w:

Ψ(x , y, z) := (x + y + 2z, x − 2y + z, 4x + y + z).

This time, Ψ is a linear transformation, so finding an explicit formula for Φ isn’t that difficult. But we like to
be lazy, so let’s use Equation 3.2. Computing Ψ∗ is easy:

Ψ∗ =





1 1 2
1 −2 1
4 1 1



 .

Then

detΨ∗ =

�

�

�

�

−2 1
1 1

�

�

�

�

−
�

�

�

�

1 2
1 1

�

�

�

�

+ 4

�

�

�

�

1 2
−2 1

�

�

�

�

= −3− (−1) + 4(5) = 18.

So we find that

vol(R) =

∫

R

1 dV =

∫

D

|(detΨ∗) ◦Φ|−1 dV

=

∫ 3

−3

∫ 2

−2

∫ 6

−6

1
18

dw dv du= (6)(4)(12)
1

18
= 16 ,

where we use the fact that D = [−3, 3]u × [−2,2]v × [−6,6]w ⊂ R3.
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4 Week 4
This week begins with a midterm, after which we’ll begin turning our attention to vector calculus. We define
vector fields and recall a vector-valued derivative of scalar-valued functions. Afterwards, we define two new
derivatives involving vector fields and consider the problem of antidifferentiation for these derivatives. Finally,
we give a very brief hint at how antidifferentiation can detect nontrivial topology in a subset of Rn.

4.1 Day 9: Midterm 1

Goals

By the end of today’s class, we should be able to do the following.
1. Solve the problems on the midterm.

Here are the midterm 1 problems and solutions.
1. Prove that Riemann integration over compact boxes is preserved by linear combination. That is, let

B ⊂ Rn be a compact box, let c and d be real numbers, and let f , g : B → R be functions which are
integrable over B. Prove that the function h: B→ R defined by h(x) := c · f (x) + d · g(x) is integrable
over B.

Solution. We use the integrability criterion to prove that h is integrable. To this end, choose ε > 0.
Our goal is to construct a partition P of B for which we have

U(h,P)− L(h,P)< ε. (4.1)

If c = 0 and d = 0, this inequality obviously holds, since all lower and upper sums of h are 0. So
we assume that c and d are not both 0. Let us first consider the case where d = 0. Then we define
ε f := ε/|c|. Because f is integrable, the integrability criterion tells us that there is a partition P of
B such that

U( f ,P)− L( f ,P)< ε f .

That is,
∑

J

(MJ ( f )−mJ ( f ))vol(J)<
ε

|c|
.

Multiplying both sides of this inequality by |c|, we find that

ε > |c|
∑

J

(MJ ( f )−mJ ( f ))vol(J) =
∑

J

(MJ (|c| f )−mJ (|c| f ))vol(J)

=
∑

J

(MJ (c · f )−mJ (c · f ))vol(J) = U(h,P)− L(h,P).

That is, (4.1) holds, so h is integrable. Notice that the penultimate equality holds because, if c < 0,
then

MJ (c · f )−mJ (c · f ) = (−mJ (−c · f ))− (−MJ (−c · f ))
= −mJ (|c| f ) +MJ (|c| f )
= MJ (|c| f )−mJ (|c| f ),

for any subbox J associated to P. The fact that h is integrable when c = 0 and d 6= 0 follows by a
completely analogous argument.

Our primary concern is the case where neither c nor d is zero. In this case we define

ε f :=
ε

2|c|
and εg :=

ε

2|d|
.
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Because both f and g are integrable, the integrability criterion allows us to choose partitions P f

and Pg of B such that

U( f ,P f )− L( f ,P f )< ε f and U(g,Pg)− L(g,Pg)< εg .

Now we can let P be the common refinement of P f and Pg . For each subbox J associated to P,
we have

MJ (h)−mJ (h) = MJ (c · f + d · g)−mJ (c · f + d · g)
≤ (MJ (c · f )−mJ (c · f )) + (MJ (d · g)−mJ (d · g)),

loosely because the largest value attained by a sum of two functions is at most the sum of the
two functions’ largest values, and similarly for smallest values. (The analogous property holds for
suprema and infima.) So we have

MJ (h)−mJ (h)≤ (MJ (|c| · f )−mJ (|c| · f )) + (MJ (|d| · g)−mJ (|d| · g))
= |c|(MJ ( f )−mJ ( f )) + |d|(MJ (g)−mJ (g))

(4.2)

because, as explained above, MJ (c · f )−mJ (c · f ) = MJ (|c| f )−mJ (c| f |), for any c ∈ R, and similarly
for d. Now we multiply (4.2) by vol(J) and sum over all subboxes J associated to P to see that

∑

J

(MJ (h)−mJ (h))vol(J)≤ |c|
∑

J

(MJ ( f )−mJ ( f ))vol(J) + |d|
∑

J

(MJ (g)−mJ (g))vol(J).

But this just means that

U(h,P)− L(h,P)≤ |c|(U( f ,P)− L( f ,P)) + |d|(U(g,P)− L(g,P)).

Finally, P is a refinement of P f . Lemma 1.9 of the class notes tells us that L( f ,P f )≤ L( f ,P) and
U( f ,P)≤ U( f ,P f ), so

U( f ,P)− L( f ,P)≤ U( f ,P f )− L( f ,P f ).

Similarly,
U(g,P)− L(g,P)≤ U(g,Pg)− L(g,Pg).

So we find that

U(h,P)− L(h,P)≤ |c|(U( f ,P)− L( f ,P)) + |d|(U(g,P)− L(g,P))
≤ |c|(U( f ,P f )− L( f ,P f )) + |d|(U(g,Pg)− L(g,Pg))

< |c| · ε f + |d| · εg

= |c|
ε

2|c|
+ |d|

ε

2|d|
= ε,

meaning that (4.1) is satisfied. According to the integrability criterion, h is integrable.

Note. An even better way to do solve the problem is to (a) show that c f is integrable, for any c ∈ R,
(b) show that f + g is integrable, and (c) combine these two facts to get the desired conclusion.

2. Let B be a compact box in Rn, let f : B→ R be a function on B, and suppose that for each n ∈ N we have
a function fn : B→ R. We say that the sequence ( fn) converges uniformly to f if, for every ε > 0, there is
some N ∈ N such that

sup{| f (x)− fn(x)| : x ∈ B}< ε,

whenever n≥ N . That is, the difference between f (x) and fn(x) is at most ε, for all x ∈ B. Suppose that
( fn) converges uniformly to f , and that each fn is integrable over B. Prove that f is also integrable over
B.

Solution. We will prove that f is integrable using the integrability criterion. To this end, choose
ε > 0. With ε > 0 chosen, define

ε′ :=
ε

4vol(B)
and ε′′ :=

ε

2
.
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Because ( fn) converges uniformly to f , we can choose N ∈ N so that

sup{| f (x)− fn(x)| : x ∈ B}< ε′,

for all n≥ N . Moreover, since fN is integrable over B, the integrability criterion tells us that we can
choose a partition P of B so that

U( fN ,P)− L( fN ,P)< ε′′.

Now let’s think about the difference U( f ,P)− L( f ,P). Since | f (x)− fN (x)| < ε′, we know that
fN (x)− ε′ < f (x) < fN (x) + ε′, for all x ∈ B. In particular, this means that for any subbox J of B
associated to P, we have

MJ ( f )≤ MJ ( fN ) + ε
′ and mJ ( f )≥ mJ ( fN )− ε′.

It follows that

MJ ( f )−mJ ( f )≤ (MJ ( fN ) + ε
′)− (mJ ( fN )− ε′) = (MJ ( fN )−mJ ( fN )) + 2ε′,

for every subbox J associated to P. We can multiply this inequality by vol(J) and sum over all
subboxes associated to P:

∑

J

(MJ ( f )−mJ ( f ))vol(J)≤
∑

J

(MJ ( fN )−mJ ( fN )vol(J) + 2ε′
∑

J

vol(J).

That is,

U( f ,P)− L( f ,P)≤ U( fN ,P)− L( fN ,P) + 2ε′vol(B)

< ε′′ +
ε

2
= ε.

So for any ε > 0, we can find a partition P of B so that the difference between the upper and
lower sums of f over P is less than ε. The integrability criterion allows us to conclude that f is
integrable over P.

3. For any n≥ 0, the standard n-simplex is the region

∆n :=

¨

(t1, . . . , tn) ∈ Rn :
n
∑

i=1

t i ≤ 1 and t1, . . . , tn ≥ 0

«

.

Use multiple integration1 to prove that the barycenter (or centroid) of ∆4 is ( 1
5 , 1

5 , 1
5 , 1

5 ).

Solution. Remember that the barycenter is given by t = (t1, t2, t3, t4), where

t i =
1

vol(∆4)

∫

∆4

t i dV = 24

∫

∆4

t i dV.

for 1 ≤ i ≤ 4. Now to apply Fubini’s theorem, we need to rewrite the inequalities defining our
region ∆4. Let’s say we want t1 to be the variable of our outermost integration. Then we notice
that t1 can be as small as 0 or as large as 1 and have 0≤ t1 ≤ 1. Next, suppose we have chosen a
value t1 and want to know what values t2 is allowed to attain. Certainly t2 ≥ 0, and the condition
t1 + t2 + t3 + t4 ≤ 1 tells us that t2 ≤ 1− t1, since we know that neither t3 nor t4 is negative. So

0≤ t1 ≤ 1 and 0≤ t2 ≤ 1− t2.

Similarly, once we know t1 and t2, the largest value t3 is allowed to achieve is 1− t1 − t2. Finally,
t4 runs from 0 to 1− t1 − t2 − t3. Altogether,

t i = 24

∫ 1

0

∫ 1−t1

0

∫ 1−t1−t2

0

∫ 1−t1−t2−t3

0

t i d t4 d t3 d t2 d t1.

1There are certainly other (perhaps better) ways to find this barycenter, but you are required to use multiple integration.
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Here the 24 at the front comes from the fact that 1
vol(∆4) =

1
(1/4!) = 24. Then we can compute t4:

t4 = 24

∫ 1

0

∫ 1−t1

0

∫ 1−t1−t2

0

∫ 1−t1−t2−t3

0

t4 d t4 d t3 d t2 d t1

= 24

∫ 1

0

∫ 1−t1

0

∫ 1−t1−t2

0

�

1
2

t2
4

�1−t1−t2−t3

0
d t3 d t2 d t1

= 12

∫ 1

0

∫ 1−t1

0

∫ 1−t1−t2

0

(1− t1 − t2 − t3)
2 d t3 d t2 d t1

= 12

∫ 1

0

∫ 1−t1

0

�

−
1
3
(1− t1 − t2 − t3)

3
�1−t1−t2

0
d t2 d t1

= 4

∫ 1

0

∫ 1−t1

0

(1− t1 − t2)
3 d t2 d t1

=

∫ 1

0

�

−(1− t1 − t2)
4
�1−t1

0
d t1

=

∫ 1

0

(1− t1)
4 d t1

=
�

−
1
5
(1− t1)

5
�1

0
=

1
5

.

Yikes. That was a lot of work to get one coordinate. We obtain the other coordinates via the
symmetry of ∆4. Namely, consider the C1-transformation Φ: R4→ R4 defined by

Φ(t1, t2, t3, t4) := (t1, t2, t4, t3).

Then

Φ∗ =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






,

so |detΦ∗| ≡ 1. Clearly Φ is a bijection between the boxes R4 and R4, and since |detΦ∗| is nowhere-
vanishing, we see that Φ is a coordinate system. Moreover, one can easily compute that Φ(∆4) =∆4,
and thus

t3 =

∫

∆4

t3 dV =

∫

Φ−1(∆4)

(t3 ◦Φ)|detΦ∗| dV

=

∫

∆4

t4 dV = t4 =
1
5

.

By completely analogous reasoning, the symmetry of ∆4 ensures that t1 = t2 = t4 =
1
5 . So we

conclude that our barycenter is given by t = (1/5,1/5,1/5,1/5).

Remark. We could probably also solve this problem by putting a coordinate system on ∆4 whose
domain is a (hyper)cube, and then using the change of variables theorem. This should lead to the
same result, but I’m too lazy to write it up right now.

4. For a ∈ R, consider the region
Wa = {(x , y, z) : (x − a)2 + y2 ≤ 1, (x − a)2 + y2 − 1≤ z ≤ 1− (x − a)2 − y2}.

Prove that the moment of inertia of Wa about the z-axis is given by πa2 +π/3.

Solution. Notice that Wa is symmetric about the axis x = a. Based on this, we write down a shifted
version of cylindrical coordinates:

Φ(r,θ , z) := (r cosθ + a, r sinθ , z).
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Notice that r isn’t our usual radius: it’s the radius from the axis x = a, and it satisfies

r =
Æ

(x − a)2 + y2.

But this is nice, because it means we can rewrite the first inequality of Wa as 0≤ r ≤ 1 and write
the second inequality as r2 − 1≤ z ≤ 1− r2. So

Wa = {Φ(r,θ , z) : 0≤ r ≤ 1, r2 − 1≤ z ≤ 1− r2},

making integrals over Wa pretty straightforward to compute. Namely, we have

Φ∗ =





cosθ −r sinθ 0
sinθ r cosθ 0

0 0 1



 ,

so
detΦ∗ =

�

�

�

�

cosθ −r sinθ
sinθ r cosθ

�

�

�

�

= r cos2 θ + r sin2 θ = r.

We conclude that Φ: [0,∞)r × [0,2π]θ ×Rz → R3
x ,y,z is a coordinate system. Indeed:

• the domain [0,∞)× [0,2π]×R is a box;
• on the interior (0,∞)× (0, 2π)×R, Φ is injective;
• the image of Φ is all of R3

x ,y,z;
• the Jacobian determinant detΦ∗ = r does not vanish on the interior of the domain of Φ.

This allows us to compute the moment of inertia of Wa about the z-axis:

Iz =

∫

Wa

D2 dV =

∫ 2π

0

∫ 1

0

∫ 1−r2

r2−1

D2(Φ(r,θ , z)) r dz dr dθ .

The only catch is that we need to write down D2(Φ(r,θ , z)). Certainly D2(x , y, z) = x2 + y2, so we
have

D2(Φ(r,θ , z)) = (r cosθ + a)2 + r2 sin2 θ = r2 + 2ar cosθ + a2.

Finally, we can integrate:
∫

Wa

D2 dV =

∫ 1

0

∫ 2π

0

∫ 1−r2

r2−1

(r2 + 2ar cosθ + a2) r dz dθ dr

=

∫ 1

0

∫ 2π

0

(r2 + 2ar cosθ + a2) r (2− 2r2) dθ dr

= 2π

∫ 1

0

(r2 + a2) r (2− 2r2) dθ dr

= 2π

∫ 1

0

(2a2r + 2r3 − 2a2r3 − 2r5) dr

= 2π
�

a2r2 +
1
2

r4 −
1
2

a2r4 −
1
3

r6
�1

0

= 2π
�

a2

2
+

1
6

�

= πa2 +
π

3
.

Notice that along the way we swapped the order of integration, and used the identity
∫ 2π

0
cosθ dθ =

0. We have a reality check here: the minimum moment of inertia occurs when a = 0, so that the
cylinder is centered on the z-axis, and increases quadratically as we move the cylinder away from
the axis.
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An alternative argument uses the parallel axis theorem, established in Homework 2. This says that
if L0 is an axis passing through the center of gravity of Wa and L is a parallel axis at a distance a
from L0, then

I = I0 +Ma2,

where I and I0 are the moments of inertia of Wa about L and L0, respectively, and M is the mass of
Wa. To use this approach, we must
(a) compute the mass M of Wa;
(b) determine the center of gravity of Wa;
(c) determine the moment of inertia I0 of Wa about the axis which passes through the center of

gravity and is parallel to the z-axis.
I won’t fill out the details here, but this is a perfectly viable strategy.

Whew! With that behind us, we can say goodbye to ε for a while.

4.2 Day 10: Gradients and curls

Goals

By the end of today’s class, we should be able to do the following.
1. Use the chain rule to define the gradient of a function of several variables.
2. Explain some properties — mathematically and physically — which distinguish gradient vector

fields within the larger class of vector fields on Rn.
3. Define the curl of a vector field, and use this to state a necessary condition for a C1-vector field

on Rn to be a gradient vector field.

So far in this course we’ve focused on integration — a good thing to do in a course on integral calculus.
But the Fundamental Theorem of Calculus tells us that integration is very closely related to antidifferentiation;
a major theme of the next few weeks will be to find antiderivatives for vector fields. To do this, we’ll first
need to define vector fields, and then we’ll define some derivatives which output vector fields (so that we
can then antidifferentiate).

Definition. Given a subset A of Rn, a vector field X on A is a vector-valued function X : A→ Rn. We say
that X is continuous if each component function is continuous, and we say that X is a C1-vector field if
each component function is continuously differentiable.

Remark. Unless otherwise stated, we’ll assume that the vector fields we consider are C1.
We will typically use component notation to write our vector fields. That is, we will write

X = 〈F1, . . . , Fn〉,

where Fi : A→ R is a scalar-valued function of several variables. For vector fields on subsets of R2 and R3 we
may also use the notation

X = F1i+ F2j or X = F1i+ F2j+ F3k,

where i, j, and k are the constant vector fields given in components by

i= 〈1,0, 0〉, j= 〈0, 1,0〉, k= 〈0,0, 1〉.

Of course, when treating i and j as vector fields on R2 we omit the third component.

We’re already familiar with one derivative that produces a vector field: the gradient. Let’s state the
definition again, though, because my preferred definition is maybe a little different from what you saw in 32A.

Definition. The gradient of a differentiable function f : Rn→ R is the unique vector field ∇ f : Rn→ Rn
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(a) X = 〈x , y〉 (b) Y = 〈−y, x〉

Figure 4.1: A pair of vector fields on R2

which satisfies the differential equation
d
d t
( f (r(t))) =∇ f (r(t)) · r′(t),

for all vector-valued functions r: R→ Rn and all t ∈ R.

Exercise 4.1. Use the chain rule to prove that, in rectangular coordinates, the gradient of f : Rn→ R is given
by

∇ f =
n
∑

k=1

∂ f
∂ x k

∂

∂ x k
,

where ∂

∂ xk denotes the constant vector field ek on Rn. In the (optional portion of the) homework you’ll see
that this sort of formula does not necessarily hold in non-rectangular coordinate systems.

Since the gradient is a derivative for scalar-valued functions which produces a vector field, we can then
ask for the antiderivative of a vector field. Inspired by physics, we call this antiderivative the scalar potential.

Definition. Let X : A→ Rn be a vector field on a subset A of Rn. A scalar potential (or scalar potential
field) is a function φ : A→ R satisfying

∇φ(p) = X (p),

for all points p ∈ A. If a scalar potential exists for X , we say that X is conservative.

Now given an arbitrary C1-vector field X , there is no reason to believe that X should be conservative. But
conservative vector fields are particularly special. Over the next couple of weeks, we will discuss several
distinguishing properties of conservative vector fields (including why they’re called conservative), but for
now we point out that conservative vector fields point in the direction of greatest increase for their scalar
potentials. That is, conservative vector fields attempt to maximize some objective function. So, if our minds
are not shrouded by actual knowledge of physics, we can imagine a physicist watching some objects2 move
around, following the flow of a vector field X . The physicist might then wonder to herself, "Are these ob-
jects trying to maximize some function?" This isn’t so far-fetched: most objects are trying to minimize their
potential energy, so the physicist is wondering, "What’s the potential energy function in my setting?" In
mathematical terms, she’s asking, "Does the vector field these objects are following admit a scalar potential?"
So she’s looking for an antiderivative, and as mathematicians we’re thrilled that someone cares about our work.

Hopefully we’re now convinced that this antidifferentiation problem is worth solving; next, let’s try to
develop some tools to solve it. Consider the vector fields

X = 〈x , y〉 and Y = 〈−y, x〉

on R2, depicted in Figure 4.1. Based on the plots, it seems as though X is trying to maximize a quantity —
namely, distance from the origin — and therefore could be a gradient. On the other hand, Y has closed orbits.

2Let’s take full advantage of our ignorance of physics and say she’s watching "particles."
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That is, we can write down a parametrized curve r: [0,1]→ R2 such that

Y (r(t)) = r′(t) and r(0) = r(1).

For instance, r(t) = (cos(2πt), sin(2πt)) will work. If Y =∇φ, then we would find that
d
d t
(φ(r(t))) =∇φ(r(t)) · r′(t) = ‖Y (r(t))‖2,

for all t. For the particular closed curve we’ve chosen, Y (r(t)) never vanishes, so this derivative is always posi-
tive. But this is nonsense: we know that r(0) = r(1), so φ(r(0)) = φ(r(1)). By assumption, φ is differentiable,
so the mean value theorem tells us that there must be some value t0 ∈ (0, 1) where d

d t (φ(r(t0))) = 0. If Y
were a gradient, then (r(t),φ(r(t))) would parametrize some kind of Relativity staircase.

With this vague discussion behind us, it’s really not difficult to prove that Y fails to be a gradient. If
Y =∇φ, then

−y = φx and x = φy .

From this it follows that φx y = −1, while φy x = 1. Of course this violates Clairaut’s theorem3, and we conclude
that no such φ exists. On the other hand, if X =∇φ, then

x = φx and y = φy .

This checks out, as it tells us that φx y = 0 = φy x . So we have a necessary condition for a vector field to be
conservative.
Proposition 4.2. Let X : A→ R2 be a C1-vector field on an open subset A of R2, and write X = 〈F1, F2〉. If X is
conservative, then

∂ F1

∂ y
=
∂ F2

∂ x
, (4.3)

for all points (x , y) ∈ A.

A word on necessary and sufficient conditions. In our search for a characterization of conservative
vector fields, Proposition 4.2 give us what is known as a necessary condition. That is, in order for
X to be conservative, its component functions must satisfy (4.3). On the other hand, we sometimes
look for sufficient conditions. These are properties which, when satisfied by X , guarantee that X is a
conservative vector field. In the best of all worlds, we would find a condition which is both necessary
and sufficient, and thus provides a perfect test of conservativity.

Exercise 4.3. Prove that the vector field

X =
 −y

x2 + y2
,

x
x2 + y2

·

,

defined on the open subset R2 \{(0,0)} of R2, satisfies Equation 4.3, but is not conservative. This demonstrates
that the necessary condition given by Proposition 4.2 is not sufficient.

At present, the only sufficient condition we have for conservative vector fields is the definition itself. So
the only way to verify that a vector field is conservative is to explicitly produce a scalar potential. For our
example of X = 〈x , y〉, this is not so bad. As we said above, any φ satisfying X =∇φ has

x = φx and y = φy .

From the first equation we deduce that

φ(x , y) =
1
2

x2 + g(y),

for some function g : R→ R. Notice that where in single-variable calculus we would add an arbitrary constant
to an antiderivative, here we must add an arbitrary function of the remaining variable (in this case y). This is

3Recall that Clairaut’s theorem tells us that, if all second-order derivatives of φ : Rn→ R exist and are continuous, then φx i x j = φx j x i ,
for all 1≤ i, j ≤ n. This is also called equality of mixed partials.
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because the x-derivative φx doesn’t see such functions. Differentiating this expression for φ against y, we
find that

y = φy =
∂

∂ y

�

1
2

x2 + g(y)
�

= g ′(y),

so g(y) = 1
2 y2 + C , for some constant C . That is,

φ(x , y) =
1
2

x2 +
1
2

y2 + C ,

for some arbitrary constant C . So X = 〈x , y〉 is indeed conservative, and we see that flowing along X will
increase (one half of the square of) distance from the origin.

Proposition 4.2 gives us a necessary condition for conservative vector fields on open subsets of R2. Using
the same reasoning, we can develop a necessary condition for conservative vector fields on R3. Let’s consider
a vector field

X = 〈F1, F2, F3〉,

and suppose X =∇φ, for some scalar potential φ : R3→ R. Then

〈F1, F2, F3〉=


∂ φ

∂ x
,
∂ φ

∂ y
,
∂ φ

∂ z

·

.

Once again, we can use Clairaut’s theorem to make some deductions about the component functions F1, F2,
and F3. But this time we get three differential equations rather than one:

∂ F3

∂ y
=
∂ 2φ

∂ y∂ z
=
∂ 2φ

∂ z∂ y
=
∂ F2

∂ z

∂ F1

∂ z
=
∂ 2φ

∂ z∂ x
=
∂ 2φ

∂ x∂ z
=
∂ F3

∂ x
∂ F2

∂ x
=
∂ 2φ

∂ x∂ y
=
∂ 2φ

∂ y∂ x
=
∂ F1

∂ y
.

Whoa. We can repackage these three differential equations as a single vector equation:


∂ F3

∂ y
−
∂ F2

∂ z
,
∂ F1

∂ z
−
∂ F3

∂ x
,
∂ F2

∂ x
−
∂ F1

∂ y

·

= 0. (4.4)

The order in which we listed the three differential equations may seem mysterious, but notice that, if we’re
willing to abuse notation a bit, we can write the vector field on the left hand side of Equation 4.4 as a cross
product ∇× X , where

∇=


∂

∂ x
,
∂

∂ y
,
∂

∂ z

·

.

This vector field will be especially important to us in the coming weeks, so let’s give it a name.

Definition. Let X : A→ R3 be a C1-vector field on some open subset A of R3. The curl of X , denoted
curl X or ∇× X , is a vector field on A defined by

curl X :=∇× X :=

�

�

�

�

�

�

i j k
∂ /∂ x ∂ /∂ y ∂ /∂ z

F1 F2 F3

�

�

�

�

�

�

=


∂ F3

∂ y
−
∂ F2

∂ z
,
∂ F1

∂ z
−
∂ F3

∂ x
,
∂ F2

∂ x
−
∂ F1

∂ y

·

,

where X = 〈F1, F2, F3〉.

Remark. Given a vector field X = 〈F1, F2〉 on some subset of R2, we could compute the curl of X by extending
X to a (z-invariant) vector field on a subset of R3:

curl X =

�

�

�

�

�

�

i j k
∂ /∂ x ∂ /∂ y ∂ /∂ z

F1 F2 0

�

�

�

�

�

�

=


0, 0,
∂ F2

∂ x
−
∂ F1

∂ y

·

.

Notice that curl X is perpendicular to the x y-plane. We might sometimes write curlz X for the scalar quantity
∂ F2
∂ x −

∂ F1
∂ y , so that curl X = (curlz X )k.
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We will try to give a better explanation/motivation for the curl in future classes (such as explaining what
this has to do with curling). For now, we just use the curl as a necessary condition for conservative vector
fields in R3.
Proposition 4.4. Let X : A → R3 be a C1-vector field on an open subset A of R3. If X is conservative, then
curl X ≡ 0 on A.

Remark. The notation ≡ is often used for equality between functions, and indicates that the two functions
give the same output for every input on the stated domain.
Example 4.5. We can use Proposition 4.4 to show that X = 4yi+ x j+ 2zk is not conservative. We have

F1 = 4y, F2 = x , and F3 = 2z,

so


∂ F3

∂ y
−
∂ F2

∂ z
,
∂ F1

∂ z
−
∂ F3

∂ x
,
∂ F2

∂ x
−
∂ F1

∂ y

·

= 〈0− 0,0− 0, 1− 4〉= −3k.

Since this vector field is nonzero, X is not conservative.
Example 4.6. On the other hand, one can check that curl X does vanish for X = 〈yz + y, xz + x , x y + 1〉. We
can try to find a scalar potential for X . We want φ : R3→ R such that

φx = yz + y, φy = xz + x , and φz = x y + 1.

Integrating the first equation, we find that φ(x , y, z) = x yz+ x y + g(y, z), for some function g(y, z). Differen-
tiating this expression with respect to y tells us that

xz + x = φy = xz + x + g y .

So g y = 0, meaning that g(y, z) = h(z), for some function h. That is, φ(x , y, z) = x yz + x y + h(z). Finally, we
differentiate this expression with respect to z to find that

x y + 1= φz = x y + h′(z).

So h′(z) = 1, meaning that h(z) = z + C , for some constant C . Altogether, we find that

φ(x , y, z) = x yz + x y + z + C

is a scalar potential for X , where C is any real number.
Let’s end this section by mentioning what we won’t do. We’ve defined what it means for a vector field X

on a subset of Rn to be conservative, for any n ≥ 1, and we’ve used Clairaut’s theorem to give a necessary
condition for conservativity in the cases n= 2 and n= 3. We can use the same strategy to give a necessary
condition in any dimension, but notice that the bookkeeping becomes somewhat horrendous: for a vector
field X = 〈F1, . . . , Fn〉, Clairaut’s theorem gives

�

n
2

�

=
n(n− 1)

2

differential equations that the component functions F1, . . . , Fn must satisfy. We won’t try to write down all
of these equations, and will instead focus our attention on the cases n= 2 and n= 3. In the last portion of
the quarter, we’ll develop some machinery which will allow us to carry out the general analysis much more
elegantly.
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4.3 Day 11: Curl and divergence

Goals

By the end of today’s class, we should be able to do the following.
1. Define the divergence of a vector field on Rn.
2. State a necessary condition for a C1 vector field on R3 to admit a vector potential.
3. State Poincaré’s lemma, which gives a sufficient condition for a vector field to admit a scalar

potential or vector potential.

4.3.1 Divergence

In our last meeting, we defined a sort of gross-looking vector operation: the curl. So far, this is just a vector
field which records a necessary condition for being conservative. But there must be some reason that this
operation is called curl. Indeed, we will show in due time that curl X measures the extent to which the vector
field X is rotating: the magnitude of curl X gives a sense of the scale on which X is rotating, and curl X is
perpendicular to the plane in which X is rotating, so that curl X is supposed to be a perfectly good descriptor
for the rotative properties of X .

For now, this geometric description is wholly unjustified, but the point is that curl X is a sort of vector-valued
derivative for vector fields. Indeed, we compute curl X with derivatives of the component functions of X :

curl〈F1, F2, F3〉=

�

�

�

�

�

�

i j k
∂ /∂ x ∂ /∂ y ∂ /∂ z

F1 F2 F3

�

�

�

�

�

�

=


∂ F3

∂ y
−
∂ F2

∂ z
,
∂ F1

∂ z
−
∂ F3

∂ x
,
∂ F2

∂ x
−
∂ F1

∂ y

·

.

Since we have a derivative, we can look for an antiderivative. That is, given a vector field Y = 〈G1, G2, G3〉,
we want to know whether or not we can write Y = curl X for some other vector field X . This motivates a
definition not unlike that of a scalar potential field.

Definition. Let Y : A→ R3 be a vector field on a subset A of R3. A vector potential (or vector potential
field) is a vector field X : A→ R3 satisfying

curl X ≡ Y

on A.

Remark. When a vector field admits a scalar potential, we say that the field is conservative. We won’t use an
analogous word for vector fields which admit vector potentials. The three main physics-y adjectives for vector
fields that we’ll use are conservative, irrotational, and incompressible. Conservative is the only one of these
words that is defined by the existence of an antiderivative.
Exercise 4.7. Vector potentials are far from unique. Suppose that X is a vector potential for Y , and that φ is
any continuously differentiable scalar function. Show that X +∇φ is also a vector potential for Y . So the role
played by constants when finding scalar potentials is played by conservative vector fields when finding vector
potentials.
Remark. The non-uniqueness of vector potentials is important in ways that I can only pretend to understand.
In classical electromagnetism, the magnetic field B admits a vector potential A (called the magnetic vector
potential). Exercise 4.7 tells us that the vector potential A is not unique, and thus we have an artificial degree
of freedom in our mathematical formulation of reality. This makes classical electrodynamics a gauge theory,
and dealing with this extra degree of freedom requires a gauge fixing.

Now suppose that Y = 〈G1, G2, G3〉 admits a vector potential X = 〈F1, F2, F3〉. Then

〈G1, G2, G3〉=


∂ F3

∂ y
−
∂ F2

∂ z
,
∂ F1

∂ z
−
∂ F3

∂ x
,
∂ F2

∂ x
−
∂ F1

∂ y

·

,
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(a) Positive divergence (b) No divergence

Figure 4.2: A vector field which expands, and one which doesn’t

and we find that
∂ G1

∂ x
+
∂ G2

∂ y
+
∂ G3

∂ z
=
∂

∂ x

�

∂ F3

∂ y
−
∂ F2

∂ z

�

+
∂

∂ y

�

∂ F1

∂ z
−
∂ F3

∂ x

�

+
∂

∂ z

�

∂ F2

∂ x
−
∂ F1

∂ y

�

=
∂ 2F3

∂ x∂ y
−
∂ 2F2

∂ x∂ z
+
∂ 2F1

∂ y∂ z
−
∂ 2F3

∂ y∂ x
+
∂ 2F2

∂ z∂ x
−
∂ 2F1

∂ z∂ y
= 0,

(4.5)

with the last step following from Clairaut’s theorem. Another way to write this is via the formal equation

∇ · Y = 0,

where again ∇= 〈∂ /∂ x ,∂ /∂ y,∂ /∂ z〉. With this in mind, we define the following scalar-valued derivative of
vector fields.

Definition. Let X : A→ Rn be a C1-vector field on some open subset A of Rn. The divergence of X ,
denoted div X or ∇ · X , is a scalar-valued function on A defined by

div X :=∇ · X :=
∂ F1

∂ x1
+ · · ·+

∂ Fn

∂ xn
,

where X = 〈F1, . . . , Fn〉.

Remark. Perhaps you could abide the sin of presenting curl X as just a device for detecting the failure of X to
be a gradient. But now we’ve doubled our transgressions: it can’t be the case that both curl X and div X are
just bookkeeping devices — not with names like that! Indeed, our presentation is rather ahistorical, and it’s
somewhat painful to keep suppressing the geometric motivation behind these definitions, but some upcoming
theorems will unravel all of this for us.

From (4.5) we see that the divergence of a vector field which admits a vector potential is necessarily 0.
That is,

div(curl X ) =∇ · (∇× X ) = 0.

(Notice that the second equality, while purely formal, is kind of nice: the quantity ∇ · (∇× X ) looks like a
scalar triple product which ought to vanish, since ∇ appears twice.) Based on this, we have a necessary
condition for a vector field to admit a vector potential.
Proposition 4.8. Let X : A→ R3 be a vector field on an open subset A of R3. If X admits a vector potential, then
div X ≡ 0 on A.
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Example 4.9. From Proposition 4.8 we can easily see that the vector field X = 〈x , y, z〉, defined on all of R3

fails to admit a vector potential. Indeed,

div X =
∂

∂ x
(x) +

∂

∂ y
(y) +

∂

∂ z
(z) = 3,

and thus we can’t have curl Y = X for any vector field Y . Even though we haven’t yet interpreted the divergence
geometrically, Figure 4.2a suggests that we’ve made a meaningful measurement: the vector field X is certainly
diverging from the origin.
Exercise 4.10. Based on Example 4.9, produce a vector field whose divergence is everywhere negative. Sketch
your plot and make a hypothesis as to what negative divergence tells us.
Example 4.11. On the other hand, if X = 〈2y,−2x , 2〉, then

div X =
∂

∂ x
(2y) +

∂

∂ y
(−2x) +

∂

∂ z
(2) = 0,

so Proposition 4.8 suggests that X could admit a vector potential. Let’s see if we can find one. We want

Y = 〈G1, G2, G3〉

so that


∂ G3

∂ y
−
∂ G2

∂ z
,
∂ G1

∂ z
−
∂ G3

∂ x
,
∂ G2

∂ x
−
∂ G1

∂ y

·

= 〈2y,−2x , 2〉. (4.6)

To make our computation easier, we exploit the non-uniqueness of vector potentials. Specifically, if Y is a
vector potential for X , then so is Y +∇φ, for any scalar function φ. We can define φ to be a z-antiderivative
of −G3:

φ(x , y, z) := −
∫

G3(x , y, z) dz.

Then the third component of ∇φ is −G3, and thus the third component of Y +∇φ is 0. The upshot is that if
X admits a vector potential, then X admits a vector potential whose z-coordinate is identically 0. For this
reason we assume that G3 ≡ 0, so that (4.6) reduces to the differential equations



−
∂ G2

∂ z
,
∂ G1

∂ z
,
∂ G2

∂ x
−
∂ G1

∂ y

·

= 〈2y,−2x , 2〉.

Integrating the first two components against z, we find that

G2 = −2yz + g(x , y) and G1 = −2xz + h(x , y),

for some functions g(x , y) and h(x , y). Then

2=
∂ G2

∂ x
−
∂ G1

∂ y
=
∂ g
∂ x
−
∂ h
∂ y

.

This differential equation still leaves us with a good deal of freedom, so we arbitrarily take h ≡ 0 and
g(x , y) = 2x + C , for some constant C . So we see that

Y = 〈−2xz,−2yz + 2x , 0〉

gives a vector potential for X .
Exercise 4.12. Another vector potential for 〈2y,−2x , 2〉 is given by 〈−y, x , x2 + y2〉. Prove that, in this case,
this potential differs from 〈−2xz,−2yz + 2x , 0〉 by a conservative vector field. We caution that, in general,
this need not be true.
Exercise 4.13. Consider the vector field X , defined on R3 \ {(0, 0,0)} by

X =
1

(x2 + y2 + z2)3/2
〈x , y, z〉.

Show that div X = 0, and then plot X . Your plot should seem to clash with your computation. For a challenge,
prove that X does not admit a vector potential. This demonstrates that, while Proposition 4.8 gives a necessary
condition for the existence of a vector potential, it does not give a sufficient condition.
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4.3.2 Poincaré’s lemma

Over the last two class meetings, we’ve discussed three derivatives which involve vector fields on R3: the
gradient and curl are vector-valued derivatives, while divergence is a derivative which is applied to vector
fields. For any open subset A of R3, these can be assembled into the following diagram:

C∞(A) X(A) X(A) C∞(A)
grad curl div (4.7)

Here C∞(A) denotes the set of infinitely-differentiable4 functions A→ R, while X(A) denotes the set of smooth
vector fields on A. By definition we have

∇×∇φ = 0 and ∇ · (∇× X )

for any scalar field φ : A→ R and any vector field X : A→ R3, so following two consecutive steps of the diagram
in (4.7) gives 0. Another way to write this is as

imgrad ⊆ ker curl and imcurl ⊆ kerdiv .

That is, the image of the gradient lies in the kernel of curl, and likewise the image of curl lies in the kernel of
divergence. The image of gradient is the set of vector fields in X(A) which can be written as the gradient of
some function, and the kernel of curl is the set of vector fields whose curl is 0. A natural question is then:
under what circumstances do we have imgrad = ker curl and im curl = kerdiv? That is, are the necessary
conditions given by Propositions 4.2 and 4.4 ever sufficient conditions? Poincaré gives us an affirmative
answer.

Theorem 4.14: Poincaré’s lemma

Suppose A⊂ R3 is contractible. Then im grad= ker curl and imcurl= ker div.

We won’t prove Poincaré’s lemma right now, but will return to prove a much more general version later in
the quarter. We also won’t give a careful definition of contractible right now, but will simply say that a subset
A of Rn is contractible if it can be continuously shrunk to a point. So, for instance, the punctured Euclidean
spaces R2 \ {(0,0)} and R3 \ {(0, 0,0)} are not contractible.

Poincaré’s lemma explains the phenomena observed in Exercises 4.3 and 4.13. In these exercises we find
vector fields which satisfy the necessary conditions of Propositions 4.2 and 4.4, respectively, but still fail to
have the desired potential fields. That’s because the domains of these vector fields are not contractible, and
thus our necessary conditions are not sufficient.
Remark. We point out, however, that a vector field defined on a non-contractible domain can have a scalar
or vector potential: Poincaré’s lemma doesn’t rule this out. On non-contractible domains we are (for now)
relatively clueless as to what happens.
Example 4.15. Consider the vector field

X = 〈−ex yz x y, x y,−xz + ex yz yz〉.

Without Poincaré’s lemma, the only way to be sure that X admits a vector potential is to find one. But since
the domain of X is all of R3 — and is thus contractible — Poincaré’s lemma tells us that it’s enough to make
sure that div X = 0. Indeed,

div X =
∂

∂ x
(−ex yz x y) +

∂

∂ y
(x y) +

∂

∂ z
(−xz + ex yz yz)

= (−ex yz y − ex yz x y2z) + (x) + (−x + ex yz y + ex yz x y2z)

= 0.

From Poincaré’s lemma, we conclude that X admits a vector potential.
I’m hoping that later this quarter we can investigate the diagram (4.7) more closely for non-contractible

subsets of R3. Poincaré’s lemma indicates that this diagram can somehow detect "holes" in our set A, and it
turns out that the diagram in (4.7) can detect properties that are even more subtle. Henri Poincaré was a
founder of the field which is today known as topology, which studies precisely the sorts of properties that (4.7)
is able to see.

4We don’t need φ to be infinitely differentiable in order to apply the derivatives in this diagram, but make this assumption just to make
our lives easier.
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5 Week 5
Last week we discussed two new derivatives for vector fields — curl and div — and discussed some antidif-
ferentiation problems for vector fields. This week we take a look at line integrals, which may at first seem
wholly unrelated to the derivatives discussed last week. Our week will culminate with Green’s theorem,
which explains how (some) of these line integrals relate to (one) of the vector field derivatives we wrote down
last week. This will establish a pattern to be followed for the next few weeks, where we discuss some notion
of integration for vector fields, and then relate this integration to a vector derivative.

5.1 Day 12: Line integrals of functions

Goals

By the end of today’s class, we should be able to do the following.
1. Define simple parametrized curves in Rn.
2. Define the line integral of a scalar function along a parametrized curve.
3. Use line integrals to compute areas and masses.

Consider the disc D = {(x , y) : x2 + y2 ≤ 9} in R2
x ,y . Say we want to build a fence around the boundary

of this disc, and that the fence’s height at the point (x , y) will be given by h(x , y) = x2 + 4y2. This fence is
depicted in Figure 5.1. How might we compute the area of the fence?

We’re quite familiar with computing areas via integrals, but since h is a function of two variables, the
only integral we have so far is the double integral, which computes volume. Today we will introduce line
integrals, which, in a possibly confusing twist of terminology, allow us to integrate a function f : Rn→ R over
a curve C ⊂ Rn.

5.1.1 Parametrized curves

In defining line integrals, we will always assume that our curve C admits a parametrization. Moreover, we
expect our parametrizations to be injective and differentiable on the interior of their domains. Note that this
excludes self-intersecting curves.

Definition. A simple parametrized curve in Rn is a piecewise C1-mapping

r: I → Rn,

where I ⊂ R is an interval and r is injective when restricted to the interior�I of I . We say that r is regular
if r′(t) is defined and nonzero, for all t ∈�I .

Remark. We exclude self-intersecting curves from today’s discussion simply to make things a little easier; we
can reasonably talk about line integrals over such curves if we want.

We will often conflate the parametrization r and the curve C which is the image of the parametrization,
calling them both the curve. This is a little dangerous, however, because a single curve C ⊂ Rn admits infinitely
many parametrizations.

Definition. Given a parametrized curve r: I → Rn, a reparametrization of r is a C1-mapping

φ : J → I ,

where J ⊂ R is an interval, such that φ′(t) 6= 0, for all t ∈ J . If φ′(t)> 0 for all t ∈ J , then we say that φ
is orientation-preserving; otherwise we say that φ is orientation-reversing.

Remark. In another abuse of terminology, we will often refer to the parametrized curve r ◦φ : J → Rn as a
reparametrization of r.
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Figure 5.1: We can use line integration to compute the area on
the cylinder x2 + y2 = 9 satisfying 0≤ z ≤ x2 + 4y2.

Example 5.1. You are likely familiar with computing arclength reparametrizations of regular curves. To
construct such reparametrizations, we fix a value t0 ∈ I and consider the arclength function g : I → R, defined
by

g(t) :=

∫ t

t0

‖r′(u)‖ du.

Because r is regular, g ′(t) = ‖r′(t)‖ never vanishes, and g is a bijection onto its image J := g(I). We can
therefore define φ : J → I to be the inverse of g, and we find that

r ◦φ : J → Rn

is a unit-speed reparametrization of the curve C parametrized by r.

5.1.2 Line integrals

We can now give a sketchy description of how one would define line integrals. We won’t be particularly careful
with this definition, which we rarely use in practice. Throughout, we take

r: I → R2

to be a regular, simple parametrized curve, and we take f : R2→ R to be a continuous function. The story is
completely analogous in higher dimensions.

First, let’s describe geometrically the area that our integral should compute: we have a surface {(r(t), z) :
t ∈ I , z ∈ R}, which is the cylinder in R3 whose cross-section at z = 0 is parametrized by r. We’re hoping
to compute the area of S, which is that portion of our surface bounded by the plane z = 0 and the graph
z = f (x , y). Again, see Figure 5.1.

As with any integral, we proceed by taking increasingly accurate approximations. We may partition the
interval I into subintervals J1, . . . , Jn and then ask for the relevant area above each subinterval Jk. One wrinkle
we have is that, in addition to having a non-constant height over Jk (as was the case in regular, single-variable
integration), the base of our two-dimensional region is itself curved. That is, even if we approximate the value
of f (r(t)) over the interval Jk, we can’t very well compute the area of a surface with base parametrized by
r: Jk → R2. So we must also approximate the base. Namely, if we have Jk = [tk−1, tk], then we consider the
line segment parametrized by

`k(λ) := (1−λ)r(tk−1) +λr(tk), 0≤ λ≤ 1.

This line segment in R2 approximates the image of r: Jk → R2, and over this line segment we may approximate
the height of our surface S by f (tk−1), which is the height at the left endpoint tk−1. See Figure 5.2.
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(a) Approximating C (b) Approximating S

Figure 5.2: When defining line integrals, we approximate the
surface over C by approximating f with a piecewise constant
function and approximating C with a polygon.

Hopefully we can see from this vague description that the area in which we’re interested should be
approximated by

area(S)≈
n
∑

k=1

f (r(tk−1))‖r(tk)− r(tk−1)‖, (5.1)

since each of the terms in our sum is the height of one of our rectangles, multiplied by the length of its base.
We will very loosely define the line integral of f over the curve C which is parametrized by r to be the limit
of such approximations as our partitions become arbitrarily fine:

∫

C
f ds := lim

n→∞

n
∑

k=1

f (r(tk−1))‖r(tk)− r(tk−1)‖.

Of course this is very far from being rigorous, since (a) the notation tk isn’t really well-defined as n varies;
and (b) we haven’t addressed the question of which functions are integrable over C. For this reason, we don’t
give the line integral the honor of a boxed definition.
Remark. Even though we still haven’t given a rigorous treatment of differential forms, take note of the
notation we use for line integrals. We integrate against the differential form ds, which measures arclength.
This doesn’t have any actual meaning at this point in the course, but one takeaway is that we don’t want the line
integral of f over C to depend on how we parametrize C. Since arclength is independent of parametrization,
this is a reasonable quantity against which to integrate.

At this point, line integrals continue following the usual story for integrals: we write down a definition in
terms of partitions, and then we find a way to not use that definition directly. Our first observation is that if
we have a very fine partition, then tk is not that much larger than tk−1, and thus we can make a local linear
approximation:

r(tk)≈ r(tk−1) + (tk − tk−1)r
′(tk−1).

So we see that
‖r(tk)− r(tk−1)‖ ≈ ‖(tk − tk−1)r

′(tk−1)‖= (tk − tk−1)‖r′(tk−1)‖,
and thus

area(S)≈
n
∑

k=1

f (r(tk−1))‖r′(tk−1)‖(tk − tk−1).

But this should look familiar. Specifically, this is the nth left-hand Riemann sum for the function g : I → R
defined by

g(t) := f (r(t))‖r′(t)‖,
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where we compute the Riemann sum using the partition P = {t0, t1, . . . , tn}. So we’ve given a not-very-rigorous
justification for the following result.

Theorem 5.2: Computing scalar line integrals

Let r: I → Rn be a regular, simple parametrization of a curve C ⊂ Rn. If f : Rn→ R is continuous, then
∫

C
f ds =

∫

I

f (r(t))‖r′(t)‖ d t.

Proving this result carefully is kind of tedious (not unlike proving the change of variables theorem), so we
won’t do it. But if you already believe the single-variable change of variables theorem, then we can justify this
theorem in a different way. Consider the following exercise.
Exercise 5.3. Show that if r: I → Rn is a regular, simple parametrized curve and φ : J → I is a reparametriza-
tion, then

∫

J

f ((r ◦φ)(t))


(r ◦φ)′(t)


 d t =

∫

I

f (r(t))‖r′(t)‖ d t.

So according to Exercise 5.3, we could define the line integral of f along C by taking any regular, simple
parametrization of C and computing the integral on the right hand side of Theorem 5.2. Exercise 5.3
guarantees that this definition makes sense.
Remark. We will sometimes use the notation

∮

C f ds for line integrals, in the event that C is a closed curve.
For us, this doesn’t have any special meaning, except to point out that C is a closed curve. I will probably not
remember to use the notation

�
C f ds, which further specifies that C is oriented counterclockwise.

5.1.3 A slightly different take

A different (but also not rigorous) way of thinking about line integrals focuses on the similarities between
Theorem 5.2 and the change of variables theorem. Diagrammatically we have

Rn Rn R Rn

R R

Φ

f

r

f . (5.2)

On the left is the setup for the change of variables theorem. We have a function f : Rn→ R which we want to
integrate over some (n-dimensional) domain in Rn, with coordinates x1, . . . , xn, and we do this by pulling our
domain back to a (hopefully nicer-looking) domain in the copy of Rn which has coordinates u1, . . . , un. As a
result, we pick up a "fudge factor" of |detΦ∗|— this measures the extent to which Φ distorts volumes.

On the right side of (5.2) we depict the setup for line integrals. Once again we have a function f : Rn→ R
which we want to integrate, but this time we want to integrate over some curve C ⊂ Rn. In order to do this,
we pull our integral back under some parametrization r: I ⊂ R→ C. This has the effect of straightening out
our curve, but comes at the expense of picking up another fudge factor. This time, lengths are distorted by
a factor of ‖r′(t)‖, so this is the term we pick up in our integral. Notice that this is an agreement with our
existing understanding of arclength, since it tells us that

∫

C
1 ds =

∫

I

‖r′(t)‖ d t,

and surely integrating the constant function 1 should give arclength.

The approach diagrammed in (5.2) will be used next week to define surface integration, and in a more
general setting we can use it to define integration on smooth manifolds.
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5.1.4 Examples

As a first example, we can solve the problem which motivated this section.
Example 5.4. We want to find the area of the surface S determined by the equation x2 + y2 = 9 and the
inequality 0≤ z ≤ x2 + 4y2 in R3

x ,y,z . This area will be given by
∫

C
h ds,

where C is the circle {(x , y) : x2 + y2 = 9} in R2, and h(x , y) = x2 + 4y2. We want to use Theorem 5.2 to
compute this line integral, so we need a regular parametrization of C. Certainly r: [0,2π]→ R2, defined by

r(t) := (3 cos t, 3 sin t),

will do the trick. Notice that r is C1, since r′(t) is defined for all t ∈ (0, 2π), and r is injective when restricted
to (0,2π). According to Theorem 5.2, we have

∫

C
h ds =

∫ 2π

0

h(r(t))‖r′(t)‖ d t =

∫ 2π

0

h(3cos t, 3 sin t)‖〈−3 sin t, 3 cos t‖ d t

=

∫ 2π

0

(9 cos2 t + 36sin2 t)(3) d t = 27

∫ 2π

0

(1+ 3 sin2 t) d t

= 27

∫ 2π

0

�

1+ 3
1− cos(2t)

2

�

d t = 27
�

t +
3
2
(t −

1
2

sin(2t))
�2π

0

= 27 [2π+ 3π] = 135π .

In addition to computing areas, we can also apply line integrals in many of the same ways that we apply
our usual, single-variable integrals.
Example 5.5. Consider a metal wire whose shape is parametrized by r(t) = (cos t, sin t, t2), t ∈ [0,2π]. Given
that the mass density function for this wire is ρ(x , y, z) =

p
z, let’s find the mass of the wire. As usual, we can

calculate mass by integrating density:
M =

∫

C
ρ ds,

where C is the curve traced out by the wire. So, according to Theorem 5.2, we have

M =

∫ 2π

0

ρ(r(t))‖r′(t)‖ d t =

∫ 2π

0

p

t2‖〈− sin t, cos t, 2t〉‖ d t

=

∫ 2π

0

|t|
p

1+ 4t2 d t =
1
8

∫ 1+16π2

1

p
u du

=
1
8

�

2
3

u3/2
�1+16π2

1
=

1
12
((1+ 16π2)3/2 − 1) .

Of course this closed form probably isn’t that useful to a physicist or engineer, but it works for a mathematician.
The mathematician is also a bit lazy about units: ρ is measured in g/cm, so M is given in g.
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5.2 Day 13: Line integrals of vector fields and flux

Goals

By the end of today’s class, we should be able to do the following.
1. Define and interpret the line integral of a vector field along a parametrized curve.
2. Compute the work done by a vector field along a parametrized curve, as well as the flux of a

vector field through a parametrized curve in R2.

Figure 5.3: We model a wire submerged in flowing water with a
curve C and a vector field F. The orange bead is moved along the
wire by the water.

5.2.1 Work

Consider a metal wire which is completely submerged in moving water, and suppose there is a bead on the
wire, free to move along the wire. We can model this situation by treating the wire as a curve C ⊂ R3 and
representing the force of the flowing water as a vector field F on R3. See Figure 5.3.

We’d like to know how much work the vector field F does along C. That is, if we want to move the bead
along the wire, how much help do we get from F?

Our first step towards answering this question is to determine the component of F along C. That is, how
much is F pushing along C at a point P on C? Notice that, in order for this question to make sense, we need
C to be an oriented curve. To this end, let’s assume that r: I → R2 is a regular, simple parametrization of
C. This choice of parametrization determines an orientation on C, in that we will take the positive tangent
direction at r(t) to be the direction in which r′(t) is pointing. In particular, choosing an orientation for C
determines a unit tangent vector T to C at each point P of C. The component of F along T is then simply F · T.
See Figure 5.4a. We calculate the total work done by F along C by integrating this quantity over all of C.

Definition. Let C ⊂ Rn be an oriented curve which admits a regular, simple parametrization, and let
F: A→ Rn be a vector field defined on some subset A of Rn containing C. The line integral of F along C
is defined by

∫

C
F · dr :=

∫

C
(F · T) ds, (5.3)

where T is the oriented unit tangent vector to C, provided the integral on the right exists. The quantity
∫

C F · dr is the work done by F along C.
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(a) Work (b) Flux

Figure 5.4: We can measure the work of F along C by integrating
the dot product F · T, and measure the flux of F through C by
integrating F ·N.

Remark.
1. Notice that (5.3) defines the line integral of a vector field to be the line integral of a certain scalar

function determined by the vector field.
2. Also notice that, while the discussion preceding our definition focused on curves in R2 and R3, we define

the line integral of a vector field in any dimension.
Now suppose, as above, that we have a regular, simple parametrization r: I → Rn of C ⊂ Rn. Moreover,

suppose that r is an oriented parametrization of C, meaning that r′(t) points in the same direction as T, for
all t ∈ I . Then

T=
r′(t)
‖r′(t)‖

.

So we can apply Theorem 5.2 to Equation 5.3 to conclude that
∫

C
F · dr=

∫

I

�

F(r(t)) ·
r′(t)
‖r′(t)‖

�

‖r′(t)‖ d t =

∫

I

F(r(t)) · r′(t) d t .

So we’ll find that vector line integrals are often less cumbersome to compute than scalar line integrals, since
the term ‖r′(t)‖ need not make an appearance.

5.2.2 Examples

Example 5.6. Consider the vector field F: R2 → R2 defined by F(x , y) = 〈cos x , sin x〉 and the curve C
parametrized by r(t) = (t, t2), −π≤ t ≤ π/2. We have

∫

C
F · dr=

∫ π/2

−π
F(r(t)) · r′(t) d t =

∫ π/2

−π
〈cos t, sin t〉 · 〈1, 2t〉 d t

=

∫ π/2

−π
(cos t + 2t sin t) d t = [−2t cos t + 3 sin t]π/2−π

= [(−π cos(π/2) + 3 sin(π/2))− (2π cos(−π) + 3sin(−π))] = 3+ 2π .

Remark. There’s another notation for vector line integrals which is sufficiently popular (especially among
physicists and engineers) to merit discussion. If F = 〈F1, F2〉, we will sometimes write the line integral of F
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over C ⊂ R2 as
∫

C
F1(x , y) d x + F2(x , y) d y, (5.4)

and similarly for vector line integrals in dimension three. One reason for the popularity of this notation is that
we can somehow sidestep any thoughts of dot products. Namely, if r(t) = (x(t), y(t)), then r′(t) = 〈x ′(t), y ′(t)〉,
so

F(r(t)) · r′(t) = 〈F1(x(t), y(t)), F2(x(t), y(t))〉 · 〈x ′(t), y ′(t)〉= F1(x(t), y(t))x ′(t) + F2(x(t), y(t)).

From this we see that
∫

C
F · dr=

∫

I

(F1(x(t), y(t))x ′(t) + F2(x(t), y(t))y ′(t)) d t,

which is precisely what we would get from (5.4) by naïvely replacing x and y with x(t) and y(t).
Example 5.7. Let’s compute the value of

I =

∫

ABC

x d y − y d x
x2 + y2

,

where A= (−1, 0), B = (0,1), C = (1, 0), and ABC is the piecewise linear path running from A to B to C . Our
first observation is that

I =

∫

AB

x d y − y d x
x2 + y2

+

∫

BC

x d y − y d x
x2 + y2

,

so we consider parametrizations

rAB(t) = (t − 1, t), 0≤ t ≤ 1 and rBC (t) = (t, 1− t), 0≤ t ≤ 1

for AB and BC , respectively. Now I =
∫

C F · dr, where

F(x , y) =


−
y

x2 + y2
,

x
x2 + y2

·

,

so
F(rAB(t)) =



−
t

(t − 1)2 + t2
,

t − 1
(t − 1)2 + t2

·

and F(rBC (t)) =


−
1− t

t2 + (1− t)2
,

t
t2 + (1− t)2

·

.

Finally, r′AB(t) = 〈1,1〉 and r′BC (t) = 〈1,−1〉, so
∫

AB

x d y − y d x
x2 + y2

=

∫ 1

0

F(rAB(t)) · r′AB(t) d t =

∫ 1

0

(t − 1)− t
(t − 1)2 + t2

d t

= −
∫ 1

0

1
2t2 − 2t + 1

d t = −
∫ 1

0

2
(2t − 1)2 + 1

d t

= [−arctan(2t − 1)]10 = arctan(−1)− arctan(1) = −
π

2
.

Similarly,
∫

BC

x d y − y d x
x2 + y2

=

∫ 1

0

F(rBC (t)) · r′BC (t) d t =

∫ 1

0

−
(1− t) + t

t2 + (1− t)2
d t

= −
∫ 1

0

1
2t2 − 2t + 1

d t = −
π

2
,

with the last step using the earlier computations. Altogether, we find that I = −π .

It’s worth pointing out that approaching these integrals like a physicist makes them a bit easier. Namely, a
physicist would note that AB has the equation y = x + 1, and thus d y = d x . So she’d simply write

∫

AB

x d y − y d x
x2 + y2

=

∫ 0

−1

x d x − (x + 1) d x
x2 + (x + 1)2

= · · ·= −
π

2
,
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with the bounds of integration determined by the range of values attained by x . Similarly, BC has equation
y = 1− x , so d y = −d x , and thus

∫

BC

x d y − y d x
x2 + y2

=

∫ 1

0

−x d x − (1− x) d x
x2 + (1− x)2

= · · ·= −
π

2
.

This is a decent way to check our work, but I’m afraid that in this class we’ll be too pedantic to find this an
acceptable argument. Our main objection is that phrases like d y = −d x don’t have any meaning to us yet.
Once we’ve defined integration of differential forms, these sorts of substitutions will be acceptable.

5.2.3 Flux

From Figure 5.4b we see that if C is a curve in R2, then F ·T is not the only reasonable dot product to consider
along C. While integrating F · T tells us the total work done by F along C, we can integrate F ·N over C to
compute the total flux of F through C, where N is the oriented unit normal vector to C. The total flux of F
through C intends to measure the extent to which F is pushing out of C.
Remark. We’re being pretty vague here about precisely what flux measures. This is somewhat intentional.
There are many forms of flux one might want to compute (volumetric flux, heat flux, energy flux, momentum
flux,...), and we’re trying to develop a mathematical model which is amenable to any of these. In general, flux
through a curve has dimensions [quantity]/([time] · [length]), while flux through a surface has dimensions
[quantity]/([time] · [area]), where quantity depends on the flux of interest to us.
Remark. Note that we can only compute the flux of F through C if C is a curve in R2. In general, we compute
the flux of a vector field through an object only when that object has one fewer dimension than the ambient
space.

Just as with the line integral of a vector field, it would be nice if we could write down a formula for
computing the total flux of F through C in terms of a parametrization of r(t) of C. Indeed we can. Let’s assume
that r(t) = (x(t), y(t)), a ≤ t ≤ b, is an oriented parametrization of C. Then

r′(t) = 〈x ′(t), y ′(t)〉

gives a properly tangent vector to C. We can obtain a normal vector to C by rotating r′(t) clockwise through
an angle of π/2 radians1. This produces a normal vector of 〈y ′(t),−x ′(t)〉, and we can normalize to obtain a
unit normal vector:

N(r(t)) =
〈y ′(t),−x ′(t)〉
‖r′(t)‖

.

We can now compute the flux:
∫

C
(F ·N) ds =

∫ b

a

�

F(r(t)) ·
〈y ′(t),−x ′(t)〉
‖r′(t)‖

�

‖r′(t)‖ d t

=

∫ b

a

〈F1(x(t), y(t)), F2(x(t), y(t))〉 · 〈y ′(t),−x ′(t)〉 d t.

Maybe this isn’t too attractive, but it gives us a means of computing the flux of F through C with a given
parametrization, and also allows us to relate flux to a line integral of a vector field.
Exercise 5.8. Suppose F = 〈F1, F2〉, and that the oriented unit normal vector N of C is obtained from the
oriented unit tangent vector T via a clockwise rotation. Prove that the flux of F through C is given by

∫

C
bF · dr,

where bF= 〈−F2, F1〉.
We make the important note that flux is not defined as a vector line integral. Instead, we compute flux via a

particular scalar line integral. By their definition, vector line integrals compute work.
Example 5.9. Figure 5.5 depicts the curve C determined by x2 + 4y2 = 16 in R2, as well as the vector fields

F1 = 〈0,1〉, F2 = 〈x ,−y〉, and F3 = 〈x , y〉.

1Of course we could also get a normal vector via counterclockwise rotation. Which normal vector we prefer will depend on the
situation, but if our curve has a counterclockwise orientation and an outward-pointing normal vector, then the convention we use here
will do the trick.
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Figure 5.5: Various vector fields flowing through a region
bounded by C = {(x , y) : x2 + 4y2 = 16}.

In each case, the total flux of Fi through C is given by
∫

C
(Fi ·N) ds.

We can see that the flux of F1 through C ought to be 0, while that of F3 should be positive. The flux of F2

through C is less clear.

Let’s compute the flux of Fk through C for k = 1,2, 3, where we take C to have an outward-pointing normal
vector. First, we parametrize C via

r(t) = (4cos t, 2 sin t), 0≤ t ≤ 2π.

So x(t) = 4cos t and y(t) = 2 sin t, and thus x ′(t) = −4sin t, while y ′(t) = 2 cos t. Consider the composition
of Fk with r(t), for k = 1, 2,3:

F1(r(t)) = 〈0,1〉, F2(r(t)) = 〈4cos t,−2sin t〉, and F3(r(t)) = 〈4cos t, 2 sin t〉.

Then the flux of F1 through C is
∫ 2π

0

〈0,1〉 · 〈2cos t, 4 sin t〉 d t =

∫ 2π

0

4 sin t d t = 0;

the flux of F2 through C is
∫ 2π

0

〈4cos t,−2 sin t〉 · 〈2cos t, 4 sin t〉 d t =

∫ 2π

0

(8 cos2 t − 8sin2 t) d t =

∫ 2π

0

8 cos(2t) d t = 0;

and the flux of F3 through C is
∫ 2π

0

〈4 cos t, 2 sin t〉 · 〈2cos t, 4 sin t〉 d t =

∫ 2π

0

8 d t = 16π.

The first and third computations match our hypotheses; the middle computation tells us that the flow exiting
our region through the left and right is balanced out by inward flow along the top and bottom.

65



Math 32BH Lecture Notes Week 5

5.3 Day 14: Green’s theorems for work and flux

Goals

By the end of today’s class, we should be able to do the following.
1. Use Green’s theorem to relate the work done by a vector field along a plane curve to the curl of

the vector field.
2. Use the flux version of Green’s theorem to relate the flux of a vector field through a plane curve

to the divergence of the vector field.

Today we will relate the line integrals we’ve defined this week to the derivatives we considered last week.
The primary result is Green’s theorem, which is a two-dimensional version of the Fundamental Theorem of
Integral Calculus. We will also discuss a flux version of Green’s theorem, and use these two results to give a
geometric justification for calling last week’s derivatives divergence and curl.

5.3.1 Green’s theorem

As mentioned above, Green’s theorem will relate line integrals to a vector derivative. Somewhat more
specifically, we will integrate the function curlz(F) over a region, and compare this integral to a line integral
along the boundary of the region. You’ll recall that vector line integrals require the underlying curve to be
oriented, so we establish a convention for our boundary orientations.

Definition. Suppose D is a closed, bounded region (also called a domain) in R2. We denote the
boundary of D by ∂D. If ∂D is a collection of simple, closed curves, then each of these curves inherit a
boundary orientation from D. Namely, ∂D is oriented in such a way that, whenever the tangent line
to ∂D is defined, the preferred unit tangent vector T has D on its left. Said another way, we choose
T so that rotating T counterclockwise by π/2 radians gives an inward-pointing normal vector. Under
these assumptions, we let N denote the outward-pointing unit normal vector — obtained from T by a
clockwise rotation of π/2 radians.

Remark. Consider the region D in Figure 5.6. The boundary ∂D consists of three simple closed curves. The
outer curve is oriented counterclockwise, so that D stays on the left side of the curve; the inner boundary
components are oriented clockwise for the same reason.

With this vocabulary established, we can state Green’s theorem.

Theorem 5.10: Green’s theorem

Let D be a closed, bounded domain in R2 whose boundary ∂D is a collection of simple closed curves,
appropriately oriented. Then

∮

∂D
F · dr=

∫∫

D
curlz(F) dA,

where F is a vector field defined on some superset of D.

By recalling the definition of curlz(F) and using our alternative notation for vector line integrals, we can
also write the conclusion of Green’s theorem as

∮

∂D
P d x +Q d y =

∫∫

D

�

∂Q
∂ x
−
∂ P
∂ y

�

dA . (5.5)

Idea of proof of Theorem 5.10. Our statement of Green’s theorem doesn’t place very many restrictions on the
domain D, which makes a careful proof of the statement somewhat beyond our scope. However, we can
outline the key points.

First, we claim that any region D satisfying the hypotheses of Green’s theorem may be decomposed
into simply connected subregions. That is, we may subdivide D into subregions, each of which has only one
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Figure 5.6: By partitioning D into D1 and D2, we may write both
∮

∂D F · dr and
∫∫

D curlz(F) dA as sums of integrals.

boundary component. For instance, Figure 5.6 shows a region D being decomposed into regions D1 and D2.
By the additivity of multiple integration we know that

∫∫

D
curlz(F) dA=

∫∫

D1

curlz(F) dA+

∫∫

D2

curlz(F) dA.

On the other hand, the orientations of our boundaries ensure that
∮

D
F · dr=

∮

D1

F · dr+

∮

D2

F · dr.

In particular, we see three horizontal line segments in each of ∂D1 and ∂D2 which are not part of ∂D.
Integrating along these segments will contribute to

∮

D1
F · dr and

∮

D2
F · dr, but these contributions will cancel

each other out, since ∂D1 and ∂D2 are oppositely oriented along these segments.

So it is sufficient to prove Green’s theorem over simply connected regions. Our next simplification is
similar in spirit, but should elicit much more suspicion. We claim that, up to some sort of limiting argument,
it’s sufficient to prove Green’s theorem over rectangles. Unfortunately, the limiting argument is too tedious for
us to include here. Loosely, instead of directly showing that

∮

∂D
F · dr=

∫∫

D
curlz(F) dA,

we would show that, for every ε > 0,
�

�

�

�

∮

∂D
F · dr−

∫∫

D
curlz(F) dA

�

�

�

�

< ε.

To do this, we would select rectangles R1, . . . , RN contained in D such that
�

�

�

�

�

�

N
∑

k=1

∮

∂ Rk

F · dr

�

−
∮

∂D
F · dr

�

�

�

�

�

<
ε

2
and

�

�

�

�

�

�

N
∑

k=1

∫∫

Rk

curlz(F) ds

�

−
∫∫

D
curlz(F) ds

�

�

�

�

�

<
ε

2
.

Finally, we would apply Green’s theorem to each rectangle. However, we’ll punt on the details of this
argument2.
Exercise 5.11. Fill in the details of the above limiting argument. (This might be more complicated than I’m
letting on; I don’t think I’ve ever actually written this argument out in full detail.)

2You might complain that we could have done this rectangle argument without assuming that D is simply connected. This is a valid
complaint. We just wrote simple connectivity out as a separate step so that we could get comfortable with the idea of partitioning D
before thinking about a sequence of partitions, as required by the rectangles.

67



Math 32BH Lecture Notes Week 5

At long last, we prove Green’s theorem under the assumption that D = [a, b]× [c, d] is a rectangle in R2.
Under this assumption, the result follows from a simple application of the Fundamental Theorem of Calculus.
First, we divide ∂D into four line segments:

C1 = {b} × [c, d], C2 = [a, b]× {d}, C3 = {a} × [c, d], C4 = [a, b]× {c}.

We have parametrizations for these four segments as follows:
Segment r(t) Domain for t r′(t) F(r(t)) · r′(t)

C1 r1(t) = (b, t) c ≤ t ≤ d r′1(t) = 〈0, 1〉 F2(b, t)
C2 r2(t) = (−t, d) −b ≤ t ≤ −a r′2(t) = 〈−1, 0〉 −F1(−t, d)
C3 r3(t) = (a,−t) −d ≤ t ≤ −c r′3(t) = 〈0,−1〉 −F2(a,−t)
C4 r4(t) = (t, c) a ≤ t ≤ b r′4(t) = 〈1, 0〉 F1(t, c)

Notice that C2 and C3 are parametrized "backwards," to match the counterclockwise orientation of ∂D. Thus
we find that

∮

∂D
F · dr=

4
∑

k=1

∫

Ck

F · dr=

∫ d

c

F2(b, t) d t −
∫ −a

−b

F1(−t, d) d t −
∫ −c

−d

F2(a,−t) d t +

∫ b

a

F1(t, c) d t.

By applying the substitution u= −t to the middle two integrals, we find that
∮

∂D
F · dr=

∫ d

c

(F2(b, t)− F2(a, t)) d t −
∫ b

a

(F1(d, t)− F1(c, t)) d t.

Now we can quickly finish the proof. Using the Fundamental Theorem of Integral Calculus, we recognize the
two integrands on the right hand side of the above equation as themselves being definite integrals:

∮

∂D
F · dr=

∫ d

c

�

∫ b

a

∂ F2

∂ x
(x , y) d x

�

d y −
∫ b

a

�

∂ F1

∂ y
(x , y) d y

�

d x

=

∫∫

D

�

∂ F2

∂ x
−
∂ F1

∂ y

�

dA

=

∫∫

D
curlz(F) dA.

This is precisely the equality we hoped to establish.
Example 5.12. Let C be the piecewise linear path ABCA in R2, where A= (0,0), B = (2, 0), and C = (2,2).
We can use Green’s theorem to compute

∫

C F · dr, where F(x , y) = 〈sin x , x2 y3〉. First of all, C = ∂D, where D
is the triangle with vertices A, B, and C . Green’s theorem thus tells us that

∮

C
F · dr=

∫∫

D
curlz(F) dA=

∫∫

D
2x y3 dA.

Now D is vertically simple (in addition to being horizontally simple), and we may write

D = {(x , y) : 0≤ x ≤ 2, 0≤ y ≤ x}.

So
∮

C
F · dr=

∫ 2

0

∫ x

0

2x y3 d y d x =

∫ 2

0

�

1
2

x y4
�x

0
d x

=

∫ 2

0

1
2

x5 d x =
�

1
12

x6
�2

0
=

16
3

.

This is a much quicker process than writing three separate line integrals, which would have been required to
evaluate

∮

C F · dr directly.
Example 5.13. A famous application of Green’s theorem allows us to compute the area of a domain D in R2

with a line integral. We compute the area of a domain D via the formula area(D) =
∫∫

D 1 dA, so in order
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to use Green’s theorem we’d like to find a vector field F: D → R2 with curlz(F) = 1. Note that this can be
accomplished via

F(x , y) = 〈−λy, (1−λ)x〉,

since we then have
curlz(F) =

∂

∂ x
((1−λ)x)−

∂

∂ y
(−λy) = (1−λ)− (−λ) = 1.

In particular, by taking λ= 0 we find that

area(D) =
∮

∂D
x d y.

So, for instance, we may compute the area of the ellipse D =
¦

(x , y) :
�

x
a

�2
+
� y

b

�2
≤ 1

©

by evaluating a line
integral along ∂D:

area(D) =
∮

∂D
x d y =

∮

∂D
〈0, x〉 · dr=

∫ 2π

0

〈0, a cos t〉 · 〈−a sin t, b cos t〉 d t

=

∫ 2π

0

ab cos2 t d t =
ab
2

∫ 2π

0

(1+ cos(2t)) d t = πab,

where we use the fact that the integral of cos(2t) over [0,2π] vanishes.

Green’s theorem is an FTIC. While most of its ink was spent on making simplifying assumptions, the
linchpin in the proof of Green’s theorem was the single-variable Fundamental Theorem of Integral
Calculus, which says that

F(b)− F(a) =

∫ b

a

F ′(x) d x .

Notice that on the left we evaluate a function, but only on the boundary of some domain. Moving to the
right side of the equation, we differentiate the function, and then compute the integral of this derivative
across the entire domain. We can think of this as trading a boundary for a derivative. This phenomenon
is also present in Green’s theorem. The formula is

∮

∂D
F · dr=

∫∫

D
curlz(F) dA,

in which we see a function being integrated over the boundary of a domain on the left, and on the
right we see that function’s derivative being integrated over the entire domain. This perspective — that
boundaries can be traded for derivatives — motivates much of the remainder of our course.

5.3.2 The flux version of Green’s theorem

Green’s theorem is a beautiful generalization of the Fundamental Theorem of Integral Calculus to two
dimensions, but it may leave you with a question. We said that FTICs should relate an integral over a boundary
to an integral of a derivative over a region. Green’s theorem gives an FTIC where the derivative in question is
curlz(F), but this is not the only derivative which a vector field on R2 admits. In this subsection we want to
think about a version of Green’s theorem where the derivative we use is divF. The justification for this result
is completely analogous to that for Green’s theorem, so we simply state the result and invite you to prove it.

Theorem 5.14: The flux version of Green’s theorem

Let D be a domain in R2 whose boundary ∂D is a collection of simple closed curves, appropriately
oriented. Then

∮

∂D
(F ·N) ds =

∫∫

D
div(F) dA,

where F is a vector field defined on some superset of D.

Exercise 5.15. Prove Theorem 5.14, at least in the case where D is a rectangle.
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Example 5.16. In Example 5.9 we computed the flux of the vector fields

F1 = 〈0,1〉, F2 = 〈x ,−y〉, and F3 = 〈x , y〉.

through the curve C determined by x2 +4y2 = 16. By realizing C as the boundary of the region D determined
by x2 + 4y2 ≤ 16, we can use Theorem 5.14 to compute these values again. We first note that

div(F1) = 0, div(F2) = 1+ (−1) = 0, and div(F3) = 1+ 1= 2.

So we immediately see that
∮

C
(F1 ·N) ds =

∫∫

D
0 dA= 0 and

∮

C
(F2 ·N) ds =

∫∫

D
0 dA= 0,

while
∮

C
(F3 ·N) ds =

∫∫

D
2 dA= 2 area(D).

Now we may rewrite the defining inequality of D as ( x
4 )

2 + ( y
2 )

2 ≤ 1, and then Example 5.13 tells us that
area(D) = 8π. So the flux of F3 through C is 16π, matching our computation in Example 5.9.

5.3.3 The geometric meaning of curl and divergence

Finally, Theorems 5.10 and 5.14 allow us to loosely justify the names of the derivatives curlz(F) and div(F).
We will give a geometric explanation for the divergence, and leave the explanation of curl as an exercise.

Given a vector field F: R2→ R2 and a point (x0, y0) ∈ R2, a reasonable way to estimate the extent to which
F is diverging at (x0, y0) is as follows: draw a small disc

Dr = {(x , y) : (x − x0)
2 + (y − y0)

2 ≤ r2}

centered on (x0, y0) and ask for the total flux of F through ∂Dr . This tells us how much F is running away
from (x0, y0). Now as we let r tend to 0, so that the disc becomes arbitrarily small, the flux of F through ∂Dr

will of course also tend to 0. But we can ask for some sort of average flux by dividing this total flux by the
area of Dr :

fluxr =
1

area(Dr)

∮

∂Dr

(F ·N) ds.

Our informal claim is that the divergence of F at a point (x0, y0) should be some sort of "instantaneous
average flux" at (x0, y0). That is, div(F)(x0, y0) should be given by the limit of fluxr as r → 0. But then, using
Theorem 5.14, we find that

lim
r→0

fluxr = lim
r→0

�

1
area(Dr)

∮

∂Dr

(F ·N) ds

�

= lim
r→0

�

1
area(Dr)

∫∫

Dr

div(F) dA

�

= div(F)(x0, y0). (5.6)

So we can think of the divergence of F at (x0, y0) as measuring the average flux of F through the boundary of
D, where D is some arbitrarily small region around (x0, y0).
Remark. Perhaps the most suspicious part of Equation 5.6 is the final equality. In words, this says that, as we
let a region shrink down to a point, the average value of a function over that region will tend towards the
function’s value at the point. The corresponding equality in one variable is

lim
r→0

�

1
2r

∫ x0+r

x0−r

f (x) d x

�

= f (x0).

I encourage you to prove this using the usual Fundamental Theorem of Integral Calculus, under the assumption
that f is continuous.
Exercise 5.17. Carry out a similar argument, using Green’s theorem, to convince yourself that evaluating
curlz(F) at (x0, y0) gives the average counterclockwise rotation of F along the boundary of some arbitrarily
small region about (x0, y0).
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6 Week 6
This week we’ll tell a story for surfaces which is very similar to the story told last week for curves. Specifically,
we will define what it means to integrate a function over a surface, and then what it means to integrate a
vector field. On Friday, the miracle of Green’s theorem is repeated (and enhanced) by Stokes’ theorem, which
establishes a fundamental relationship between surface integrals and line integrals.

6.1 Day 15: Surface integrals of functions

Goals

By the end of today’s class, we should be able to do the following.
1. Parametrize various basic surfaces in R3.
2. Justify the definition of surface integrals of scalar functions over parametrized surfaces in R3.
3. Use surface integrals to compute surface areas and masses.

The key idea behind line integrals of scalar functions is that a curve C, while it may live in any space
Rn, is fundamentally a one-dimensional object, and thus we may treat the integral of a function over C as a
single-variable integral. By analogous reasoning, if S ⊂ Rn is a surface — loosely meaning that S appears to
be two-dimensional — then we should have some sort of "double integral" for functions defined on S. Today
we’ll try to make sense of this for parametrized surfaces.

6.1.1 Parametrized surfaces

Definition. A simple parametrized surface in Rn, n≥ 2, is a piecewise C1-mapping

G : D→ Rn,

where D ⊂ R2 is a region1in R2 (often — but not always — assumed to be closed and bounded) and G is
injective when restricted to the interior �D of D. We say that G is a parametrization of S if G(D) = S.
We say that G is regular if the n× 2 Jacobian matrix

G∗(p) :=







∂ G1
∂ u (p)

∂ G1
∂ v (p)

...
...

∂ Gn
∂ u (p)

∂ Gn
∂ v (p)







has full rank, for all points p ∈ �D.

Remark. If you took 32AH or have otherwise seen enough linear algebra, then the notion of rank for a matrix
should be familiar. In case it’s not, we point out that G∗(p) has full rank if and only if the column vectors2

∂ G
∂ u
=


∂ G1

∂ u
, · · · ,

∂ Gn

∂ u

·

and ∂ G
∂ v
=


∂ G1

∂ v
, · · · ,

∂ Gn

∂ v

·

are linearly independent. In case n = 3, this is equivalent to the condition that ∂ G
∂ u ×

∂ G
∂ v is a non-vanishing

vector field on the interior of D.
Continuing to mimic the story we told for curves, we can define reparametrizations of parametrized

surfaces. However, rather than adapt the definition of reparametrizations which we used for curves, let’s
observe that reparametrizing a curve amounts to choosing a coordinate system φ : J → I on the domain of

1We haven’t given a careful definition of the word region — and we won’t — but we assume that regions have nonempty interiors. For a
region D in R2, this just means that it’s possible to draw a disc of nonzero area somewhere in D.

2We haven’t ever specified whether we think of vectors as columns or rows, mostly because this doesn’t seem like a very illuminating
discussion. But we have tried to be consistent about using angle brackets for row vectors and parentheses for column vectors. Maybe it’s
confusing that we said column vectors here and then wrote two row vectors. We just mean that ∂ G

∂ u and ∂ G
∂ v are the columns of G∗, but we

write them as rows for the sake of space.
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our curve. By analogy, suppose G : D → Rn is a parametrized surface, and that Φ: R→ R2 is a coordinate
system on D, for some rectangle R ⊂ R2. Then

G ◦Φ: Φ−1(D)→ Rn

is a parametrized surface whose image agrees with that of G, so we say that we have a reparametrization
of G. As with reparametrizations of curves, we say that Φ is an orientation-preserving reparametrization
if detΦ∗ > 0, and call Φ orientation-reversing if detΦ∗ < 0. (In the case of curves, note that the Jacobian
determinant of a coordinate system φ : J → I is given by detφ∗ = φ′, so this matches what we wrote last
week.)
Remark. Hopefully the domain we’re using for G ◦Φ isn’t too much of a stumbling block. The main idea here
is that while the image of Φ contains D, it may contain other points as well. In general, (G ◦Φ)(p) will only
be defined for a point p ∈ R if Φ(p) ∈D, and thus the domain of G ◦Φ is Φ−1(D) ⊂ R.
Example 6.1. Using our knowledge of the cylindrical coordinate system, parametrizing a cylinder centered
on the z-axis in R3 is no problem at all. Indeed, we can parametrize the cylinder CR = {(x , y, z) : x2+ y2 = R2}
with the map G : [0,2π]θ ×Rz → R3 defined by

G(θ , z) := (R cosθ , R sinθ , z).

When restricted to (0, 2π)θ ×Rz , this map is injective, and we notice that the Jacobian matrix

G∗ =





−R sinθ 0
R cosθ 0

0 1





has full rank, for all choices of θ and z. Indeed, the cross product

∂ G
∂ θ
×
∂ G
∂ z
=

�

�

�

�

�

�

i j k
−R sinθ R cosθ 0

0 0 1

�

�

�

�

�

�

= 〈R cosθ , R sinθ , 0〉

never vanishes, and thus G is a regular parametrization. We point out that, while G is inspired by cylindrical
coordinates, this is a fundamentally different object — it’s a parametrization of a surface.
Example 6.2. Continuing to draw motivation from familiar coordinate systems, we can easily parametrize
spheres in R3. Consider the sphere SR = {(x , y, z) : x2 + y2 + z2 = R2}, for some R > 0. We parametrize this
sphere with the map G : [0, 2π]θ × [0,π]ϕ → R3 defined by

G(θ ,ϕ) = (R sinϕ cosθ , R sinϕ sinθ , R cosϕ).

Note that G is injective when restricted to (0,2π)× (0,π), and that

∂ G
∂ θ
×
∂ G
∂ ϕ
=

�

�

�

�

�

�

i j k
−R sinϕ sinθ R sinϕ cosθ 0
R cosϕ cosθ R cosϕ sinθ −R sinϕ

�

�

�

�

�

�

=



−R2 sin2ϕ cosθ ,−R2 sin2ϕ sinθ ,−R2 sinϕ cosϕ
�

.

It may not be obvious that this cross product never vanishes, but we can verify this by computing the vector’s
magnitude:









∂ G
∂ θ
×
∂ G
∂ ϕ









2

= (−R2 sin2ϕ cosθ )2 + (−R2 sin2ϕ sinθ )2 + (−R2 sinϕ cosϕ)2

= R4 sin4ϕ + R4 sin2ϕ cos2ϕ = R4 sin2ϕ.

We have assumed that R 6= 0, and we have 0< ϕ < π on the interior of our domain, so sinϕ 6= 0. We conclude
that the cross product does not vanish on the interior of our domain. From this it follows that the Jacobian
matrix of G has full rank, and thus G is regular. Again, this parametrization is inspired by a familiar coordinate
system, but is not itself a coordinate system.
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Figure 6.1: We can partition a parametrized surface S by parti-
tioning the domain D of a parametrization G : D→ R3.

Example 6.3. Another surface in R3 which is easily parametrized is given by the graph of a differentiable
function f : D ⊂ R2 → R. Since this graph is defined by the equation z = f (x , y), we simply define our
parametrization by

G(u, v) = (u, v, f (u, v)),

for all (u, v) ∈D. Notice that G is injective on all of D (not just on the interior). The Jacobian matrix of G is
given by

G∗ =





1 0
0 1
∂ f
∂ u

∂ f
∂ v



 ,

verifying that G is a C1-mapping. So G is a simple parametrized surface. To make sure that G is regular, we
compute

∂ G
∂ u
×
∂ G
∂ v
=

�

�

�

�

�

�

i j k
1 0 ∂ f

∂ u

0 1 ∂ f
∂ v

�

�

�

�

�

�

=


−
∂ f
∂ u

,−
∂ f
∂ v

, 1
·

.

Notice that this cross product will never vanish, regardless of the partial derivatives fu and fv . So G is a regular
parametrization.

6.1.2 Integrating scalar functions

As stated at the outset, what we really want to do is define some notion of "double integral" for functions
f : S → R defined on parametrized surfaces in R3. We can do this in a manner very similar to what we did
for line integrals. Namely, if we have a regular parametrization G : D→ R3 of S, then we can partition S by
partitioning D and then using G to push this partition over to S. See Figure 6.1.

Once we have a partition, we could estimate the value of our function f over each pseudobox in the
partition by plugging in some test point from the pseudobox, or by taking the infimum of all values of f over
the pseudobox, or by taking the supremum of all such values, or whatever. But, as was the case with line
integrals, we then find that we don’t know the area of the pseudobox, so we have to estimate it by taking a
planar approximation which agrees with our surface at the four corners of the pseudobox. As our partition
becomes arbitrarily fine, this approximation should become arbitrarily good.

But all of this sounds like a lot of tedious work, and, given our history with integration, we can tell where
the story is going. When we came up with Theorem 5.2 we noticed that this formula fits into an analogy with
the change of variables theorem. Let’s extend that analogy. We have

Rn Rn I Rn D R3

R R R

Φ

f

r

f

G

f (6.1)
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The first two diagrams depict the situation for the change of variables theorem and line integrals, respectively.
In both cases, we use our coordinate system or parametrization to “pull back" our integral, instead integrating
the function f ◦ Φ (or f ◦ r) over a more reasonable domain. In the process of pulling back, we pick up a
distortion factor. By the same reasoning, we should have a formula that looks like

∫∫

S
f dS =

∫∫

D
( f ◦ G)þ dA,

where þ is some to-be-determined distortion factor. So it remains to determine the distortion factor þ.

To sort out what þ should be, we think back to the two-variable version of the change-of-variables theorem.
We found that the coordinate system Φ turned a box with side lengths∆u and∆v into a pseudobox which could
be approximated by a parallelogram. Specifically, we approximated the pseudobox with the parallelogram
spanned by ∆u ∂Φ∂ u and ∆v ∂Φ∂ v , and then discovered that this parallelogram has area

�

�

�

�

det
�

∆u
∂Φ

∂ u
∆v
∂Φ

∂ v

�

�

�

�

�

=∆u∆v

�

�

�

�

det
�

∂Φ

∂ u
∂Φ

∂ v

�

�

�

�

�

=∆u∆v|detΦ∗|.

This is how we ended up with |detΦ∗| as our fudge factor for change of variables. By very similar reasoning, a
regular parametrization G will map a box with side lengths ∆u, ∆v to a pseudobox which we approximate
with the parallelogram spanned by ∆u ∂ G

∂ u and ∆v ∂ G
∂ v . As before, we approximate the area of the pseudobox

by computing the area of this parallelogram. The hangup this time is that ∂ G
∂ u and ∂ G

∂ v are vectors in R3, so we
can’t take the determinant of the matrix with these vectors as its columns. Instead, we remember that the
area of the parallelogram spanned by two vectors in R3 is given by the magnitude of the cross product of
those vectors. So the area of our pseudobox is approximately









�

∆u
∂ G
∂ u

�

×
�

∆v
∂ G
∂ v

�









=∆u∆v









∂ G
∂ u
×
∂ G
∂ v









.

We conclude that, if G : D→ R3 is a regular parametrization of a surface, then the area distortion factor is
‖Gu × Gv‖. This leads to the following definition.

Definition. Let G : D → R3 be a regular, simple parametrization of a surface S. For any function
f : S → R, we define the surface integral of f over S to be

∫∫

S
f dS :=

∫∫

D
( f ◦ G)









∂ G
∂ u
×
∂ G
∂ v









dA, (6.2)

provided the integral on the right exists.

Exercise 6.4. Show that surface integrals are well-defined. Specifically, if S is a regular surface, then show
that the value of equation 6.2 is independent of what parametrization of S we use.
Remark. This definition is philosophically different from all of our previous integral definitions. We didn’t
want to deal with all the details of partitions and lower and upper sums and whatnot, so we just defined our
integral according to an equation which really ought to be true. Exercise 6.4 justifies this approach.

As was the case for line integrals, our formula for computing surface integrals assumes that we have a
regular parametrization, but we often want to integrate over objects (in this case, surfaces) which don’t admit
a regular parametrization. We won’t develop this theory carefully, but we’ll see through some examples that
we can do the natural thing: we treat surface integration as additive. For instance, to compute a surface
integral over the surface of a cube, we compute six regular surface integrals — one for each face of the cube.
Note that the regular pieces into which we break our surface are allowed to have nontrivial intersection, but
this intersection must have volume zero. Again, we won’t be super careful about this.
Remark. We have only defined scalar surface integrals for surfaces in R3 (unlike scalar line integrals, which
we defined for curves in any dimension). Had we taken an approach which involved partitions, we could have
written down a definition which works for surfaces in higher dimensions, but writing down a formula like
(6.2) would have been difficult, since the cross product only makes sense in dimension 3.
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6.1.3 Examples

Example 6.5. We can use a surface integral to compute surface area. If S has finite surface area, then this
area ought to be calculated by

area(S) =
∫∫

S
1 dS.

Let’s take S to be that portion of the cone z2 = x2 + y2 which lies between the planes z = 1 and z =
4. This is pretty easily parametrized by modifying cylindrical coordinates. Specifically, we can define
G : [1,4]r × [0,2π]θ → R3 by

G(r,θ ) = (r cosθ , r sinθ , r).

We’ll leave it as an exercise to check that G is injective when restricted to its interior, but this is certainly
believable. We now compute the distortion factor for this parametrization. First,

∂ G
∂ r
×
∂ G
∂ θ
=

�

�

�

�

�

�

i j k
cosθ sinθ 1
−r sinθ r cosθ 0

�

�

�

�

�

�

= 〈−r cosθ ,−r sinθ , r〉 .

Then








∂ G
∂ r
×
∂ G
∂ θ









2

= 2r2,

so

area(S) =
∫∫

S
1 dS =

∫∫

D









∂ G
∂ r
×
∂ G
∂ θ









dA

=

∫ 4

1

∫ 2π

0

p
2r dθ dr =

∫ 2π

0

�p
2

2
r2

�4

1

dθ

=

∫ 2π

0

p
2

2
(16− 1) dθ = 15

p
2π .

Example 6.6. The equation y = 9− z2 determines a parabolic cylinder in R3. Let’s consider the portion S of
this cylinder which satisfies 0≤ x ≤ 3 and 0≤ z ≤ 3. This surface can be parametrized by

G(u, v) = (u, 9− v2, v)

over the domain [0, 3]u × [0, 3]v . Note that if G(u1, v1) = G(u2, v2) then, by investigating the first and third
components, we see that (u1, v1) = (u2, v2). So G is injective. We also see that

∂ G
∂ u
×
∂ G
∂ v
=

�

�

�

�

�

�

i j k
1 0 0
0 −2v 1

�

�

�

�

�

�

= 〈0,−1,−2v〉 .

Because the third component of this vector field is −1, we see that Gu × Gv is nowhere-vanishing. So G is a
regular parametrization3. Now consider the function f (x , y, z) = z. We can restrict this to a function f : S → R
and we find that the composition f ◦ G : [0,3]× [0, 3]→ R is given by

( f ◦ G)(u, v) = f (u, 9− v2, v) = v.

So
∫∫

S
f dS =

∫∫

[0,3]×[0,3]

( f ◦ G)‖〈0,−1,−2v〉‖ dA=

∫ 3

0

∫ 3

0

v
p

1+ 4v2 dv du

= 3

∫ 3

0

v
p

1+ 4v2 dv =
�

3
12
(1+ 4v2)3/2

�3

0
=

1
4
(37

p

37− 1) .

Gross.
3Indeed, since y is a function of x and z, our earlier discussion about parametrizing graphs of functions applies.
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Example 6.7. As a teaser for our next section, let’s start with a vector field and a surface and write down a
scalar surface integral. For now we won’t say why we care about this particular scalar surface integral, but
we’ll answer that question next time. Consider the vector field F = 〈x , y, z〉 and the sphere SR = {(x , y, z) :
x2 + y2 + z2 = R2}, for some R> 0. The unit vector

N=
1

p

x2 + y2 + z2
〈x , y, z〉

is everywhere perpendicular to SR. Let’s compute the surface integral of the (scalar-valued) function F ·N
over SR. First, we need to compute F ·N:

f (x , y, z) := F(x , y, z) ·N(x , y, z) =
1

p

x2 + y2 + z2
〈x , y, z〉 · 〈x , y, z〉=

x2 + y2 + z2

p

x2 + y2 + z2
=
p

x2 + y2 + z2.

Now what we really care about is the restriction of f to SR. But on SR we know that x2 + y2 + z2 = R2, so
f |SR

≡ R. So we’re really just computing the integral of the constant function R. Experience tells us that
the result should just be R times the surface area of SR, which gives 4πR3, but let’s do this the hard way. As
explained above, we have a parametrization G : [0, 2π]× [0,π]→ R3, defined by

G(θ ,ϕ) = (R sinϕ cosθ , R sinϕ sinθ , R cosϕ),

and we find that ‖Gθ × Gϕ‖= R2 sinϕ. So
∫∫

SR

(F ·N) dS =

∫∫

[0,2π]×[0,π]

(R)(R2 sinϕ) dA=

∫ 2π

0

∫ π

0

R3 sinϕ dϕ dθ

=

∫ 2π

0

R3 [− cosϕ]π0 dθ =

∫ 2π

0

R32 dθ = 4πR3 ,

as expected.

6.2 Day 16: Surface integrals of vector fields

Goals

By the end of today’s class, we should be able to do the following.
1. Justify the definition of surface integrals of vector fields over parametrized surfaces.
2. Use vector surface integrals to measure the flux of a vector field through a surface.

Continuing to follow last week’s outline, we now move from scalar surface integrals to vector surface
integrals. If we don’t look too closely, the stories have a lot of similarities: we have a vector field F which is
defined all around the object over which we want to integrate (last week this object was a curve, and now it’s
a surface). To pull off the integration, we write down a scalar function which is determined by the vector
field and the object (last week it was F · T, and this week we’ll see that it’s F ·N).

But it’s worth pointing out where this analogy break down. Loosely, given a vector field F on Rn, we can
integrate F over objects which have dimension 1, or those which have codimension 1. Objects which have
dimension 1 are just curves4, and indeed we can define the line integral of F over a curve in any dimension
n. In this case, the integral of F measures the extent to which F pushes along the object. On the other
hand, an object has codimension 1 if it has one fewer dimension than the ambient space. In R2, curves have
codimension 1; when we compute the work done by F along C, we’re thinking of C as having dimension 1, and
when we compute the flux of F through C we’re thinking of C as having codimension 1. In R3, surfaces have
codimension 1, and we call objects in Rn, n> 3, with codimension 1 hypersurfaces. For an object S ⊂ Rn with
codimension 1, we can ask how much F pushes through S rather than asking how much F pushes along S.

Our story today takes place in R3. We already know how to compute the integral of a vector field along a
curve in R3, so we’ll focus on computing the integral of a vector field over a surface. That is, we already know
the dimension 1 setup, so we focus on the codimension 1 situation. According to the above discussion, this
should measure the flux of F through S.

4We haven’t said what we mean by the dimension of a subset of Rn, so this is not at all a careful statement. We’re just trying to outline
the story.
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Figure 6.2: The surface integral
∫∫

S F ·dS measures the total flux
of F through S.

6.2.1 Vector surface integrals

Following the above description, we are just about ready to give the definition of the surface integral of a
vector field. But first we point out that, as was the case for vector line integrals, the vector surface integral
requires the surface over which we’re integrating to be oriented. Namely, we will assume that a preferred
unit normal vector N has been chosen at all points of S, and in fact assume that this choice is continuous5. Not
all surfaces admit such a choice — for instance, we can’t reasonably choose a normal vector along the edges
of a cube in R3 — but, unlike with curves, this can happen for interesting reasons. A very famous example is
the Möbius strip, a surface which permits a normal vector at each point, but for which we cannot make a
continuous global choice of normal vector.

Assuming that S is oriented, we observe that the extent to which a vector field F pushes through S at a
point p ∈ S is measured by F(p) ·N(p). This motivates the following definition.

Definition. Let S ⊂ R3 be an oriented surface which admits a regular, simple parametrization, and
let F: A→ R3 be a vector field defined on some superset A of S. The surface integral of F along S is
defined by

∫∫

S
F · dS :=

∫∫

S
(F ·N) dS, (6.3)

where N is the oriented unit normal vector to S, provided the integral on the right exists. The quantity
∫∫

S F · dS is the flux of F through S.

Now suppose we have a regular, simple parametrization G : D → R3 of S. We claim that the vector
field Gu × Gv is perpendicular to S. Indeed, the tangent plane to S at G(u, v) ∈ S is spanned by Gu and Gv ,
and the cross product Gu × Gv is perpendicular to each of these vectors. We will say that G is an oriented
parametrization of S if Gu × Gv points in the same direction as N throughout the interior of D. In this case
we have

N(G(u, v)) =
(Gu × Gv)(u, v)
‖(Gu × Gv)(u, v)‖

for all (u, v) ∈D. Given a regular, simple parametrization G, let’s introduce the notation

n(u, v) :=
∂ G
∂ u
×
∂ G
∂ v

,

to save ourselves the pain of writing the cross product so many times. We make some observations about this
notation:

5It’s probably worth thinking about what this means; we won’t.
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1. There’s not really an established convention for how this notation should work. So in some texts the
lowercase n refers to the unit normal vector which we denote by N, while others agree with what we do
here. Be careful out there.

2. Unlike N, the vector n(u, v) depends on our parametrization G. In particular, if G is a negatively-oriented
parametrization, then n won’t even point in the same direction as N.

3. In general, if a regular parametrization is given for a surface, but no orientation is otherwise specified
for S, then we will assume that G is positively oriented. In this case, N= n/‖n‖.

By combining Equations 6.2 and 6.3, we conclude that
∫∫

S
F · dS=

∫∫

D

�

F(G(u, v)) ·
n(u, v)
‖n(u, v)‖

�

‖n(u, v)‖ dA=

∫∫

D
F(G(u, v)) · n(u, v) dA . (6.4)

So, just like line integrals, vector surface integrals are somewhat easier to compute than their scalar counter-
parts, since we don’t have a vector magnitude to consider.

6.2.2 Examples

Example 6.8. Figure 6.2 depicts the surface
S = {(x , y, z) : z = 4− x2 − y2, z ≥ 0}

and the vector field F = 〈0, 0,1〉. Let’s compute the flux of F through S, where S is oriented with an
upward-pointing normal vector. To do this, consider the parametrization

G(r,θ ) := (r cosθ , r sinθ , 4− r2),

defined on the domain D = [0,2]r × [0, 2π]θ . Notice that this parametrization is inspired by cylindrical
coordinates, since in that coordinate system the defining equation becomes z = 4− r2 and the inequality
z ≥ 0 implies r ≤ 2. One may check that G is injective on (0, 2)× (0,2π), and we see that

n(r,θ ) =
∂ G
∂ r
×
∂ G
∂ θ
=

�

�

�

�

�

�

i j k
cosθ sinθ −2r
−r sinθ r cosθ 0

�

�

�

�

�

�

= 〈2r2 cosθ , 2r2 sinθ , r〉.

Then ‖n(r,θ )‖= r
p

4r2 + 1 does not vanish on (0, 2)× (0,2π), so G is a regular parametrization. In fact, we
could get away without the magnitude computation by noticing that the final component of n(r,θ ) cannot
vanish when r 6= 0. Moreover, since r > 0 on the interior of our domain, n(r,θ ) is upward-pointing, and thus
our parametrization is positively-oriented. So we find that

∫∫

S
F · dS=

∫∫

D
F(G(r,θ )) · n(r,θ ) dr dθ =

∫ 2π

0

∫ 2

0

〈0, 0,1〉 · 〈2r2 cosθ , 2r2 sinθ , r〉 dr dθ

=

∫ 2π

0

∫ 2

0

r dr dθ = 4π .

The final equality follows from the fact that the given iterated integral computes the double integral of 1 over
a disc of radius 2. But this will just give the area of the disc, which is 4π.
Example 6.9. Let’s think about the ellipsoid

S =
§

(x , y, z) :
� x

4

�2
+
� y

3

�2
+
� z

2

�2
= 1

ª

.

We can compute the flux of the vector field F = zi through S with an outward-pointing normal vector. By
modifying spherical coordinates, we find that

G(θ ,ϕ) = (4 sinϕ cosθ , 3 sinϕ sinθ , 2 cosϕ)

is a parametrization of S, with domain D = [0,2π]θ ×[0,π]ϕ. The injectivity of G on the interior of its domain
follows from the usual considerations for spherical coordinates, so we check that G is regular. We have

n(θ ,ϕ) =

�

�

�

�

�

�

i j k
−4sinϕ sinθ 3 sinϕ cosθ 0
4 cosϕ cosθ 3 cosϕ sinθ −2sinϕ

�

�

�

�

�

�

= 〈−6 sin2ϕ cosθ ,−8 sin2ϕ sinθ ,−12 sinϕ cosϕ〉.
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Computing the magnitude of the vector field doesn’t seem fun, so let’s make some observations. On
(0, 2π)θ × (0,π)ϕ, the function sinϕ does not vanish, and thus if n(θ ,ϕ) = 0, we must have cosϕ = 0,
according to the final component. But if cosϕ = 0, then sin2ϕ = 1, meaning that the first two components
vanish only if cosθ = 0 and sinθ = 0. Because these equations cannot hold simultaneously, we conclude that
n(θ ,ϕ) is nonzero on the interior of our domain. So G is a regular parametrization of S.

But there’s a catch! By comparing n(θ ,ϕ) with G(θ ,ϕ), we notice that G has an inward-pointing normal
vector. So G is a negatively-oriented parametrization of S. All this means for us from a practical standpoint is
that we pick up a negative sign on our flux computation:

∫∫

S
F · dS= −

∫∫

D
F(G(u, v)) · n(θ ,ϕ) dA

= −
∫ 2π

0

∫ π

0

〈2 cosϕ, 0, 0〉 · 〈−6 sin2ϕ cosθ ,−8sin2ϕ sinθ ,−12 sinϕ cosϕ〉

= −
∫ 2π

0

∫ π

0

−12 cosϕ sin2ϕ cosθ dϕ dθ =

∫ 2π

0

�

4cosθ sin3ϕ
�π

0
dθ = 0 .

So the net flux of F through S is 0. You should try to convince yourself that this is a reasonable conclusion.

6.3 Day 17: Stokes’ theorem

Goals

By the end of today’s class, we should be able to do the following.
1. Prove Stokes’ theorem for oriented, parametrized surfaces in R3.
2. Use Stokes’ theorem to pass back and forth between line integrals and surface integrals.
3. Give a geometric interpretation of the curl of a vector field.

Last week’s classes culminated in Green’s theorem, which is a version of the Fundamental Theorem of
Integral Calculus for regions in R2. With the understanding of surfaces and surface integrals that we’ve gained
this week, we can realize a double integral over a region in R2 as a surface integral in R3. This begs the
question: does Green’s theorem actually hold for any vector surface integral in R3? That is, if C ⊂ R3 is the
oriented boundary of some surface S ⊂ R3, can we still trade boundaries for derivatives?

Today we’ll show that the answer is yes; our generalization of Green’s theorem is Stokes’ theorem.

6.3.1 Stokes’ theorem

Before stating our result, we need to extend our definition of boundary orientation just a bit. Specifically,
we previously defined the boundary orientation given by a region D ⊂ R2 to the curves which make up its
boundary; we extend this notion to surfaces in R3.

Definition. Let S ⊂ R3 be an oriented surface which admits a simple, regular parametrization, and let
N be the preferred unit normal vector on S. Assume that the boundary ∂ S is made up of curves which
admit simple, regular parametrizations. The boundary orientation on these curves prefers the unit
tangent vector T with the (somewhat informal) property that T×N points out of S.

Remark. Here are some comments on the boundary orientation:
1. The definition given here extends the definition for regions in the plane. Namely, regions in the plane

have preferred unit normal vector k (as surfaces in R3), so T× k points out of the region whenever we
choose T so that the region is on the left.

2. Another sense in which our definition extends the previous one is as follows: if we traverse ∂ S with the
correct orientation, always standing on the same side of S as the normal vector N, then S will be to our
left. This is much more easily explained with pictures, so we’ll draw some in class.

3. In case you’ve seen the Frenet frame, we point out that N is the unit normal vector to S, not to C, so
T×N need not be parallel to the binormal vector B.
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4. To make this notion of boundary orientation work in higher dimensions, we’ll end up using some
algebraic machinery to be discussed later. But the basic idea will be the same: the orientation on the
boundary is chosen so that it pairs well with an outward-pointing vector for the original object.

Theorem 6.10: Stokes’ theorem in R3

Let S ⊂ R3 be an oriented surface which admits a regular, simple parametrization, and let F: A→ R3 be
a C1-vector field on some open superset A of S. Then

∮

∂S
F · dr=

∫∫

S
curl(F) · dS, (6.5)

where ∂ S carries the boundary orientation.

Remark. If ∂ S = ;— for instance, if S is a sphere — then the integral on the left of (6.5) is defined to be 0.
Proof idea for Theorem 6.10. The basic idea of our proof is that we may use a sufficiently nice parametrization
G : D→ R3 of S to rewrite Equation 6.5 as an equality of integrals in the plane. Once in the plane, we can
simply apply Green’s theorem. The details of this argument are a little technical, but we’ll give some of them.

Let’s suppose we have a parametrization G : D → R3 which is injective on all of D, and for which the
Jacobian matrix G∗ has full rank on all of D. Essentially we are asking that, in addition to being a regular,
simple parametrization, G is regular and simple along ∂D as well. We point out that not all of the surfaces to
which Theorem 6.10 applies admit such a parametrization (e.g., a sphere admits no such parametrization).
We are just using this as a simplifying assumption. In another simplifying assumption, we suppose that the
boundary ∂D is a single curve which admits a regular, simple parametrization.

With such a G chosen, we define a vector field X: D→ R2 by

X(u, v) :=


F(G(u, v)) ·
∂ G
∂ u

,F(G(u, v)) ·
∂ G
∂ v

·

.

This choice of X is sorely lacking in motivation; don’t worry if it seems like this came out of nowhere — it sort
of did! Our plan is for X to be some kind of avatar for F on the uv-plane.

Now choose a regular, simple parametrization r: I → R2
u,v of ∂D, and write r(t) = (u(t), v(t)). Then

(G ◦ r): I → R3 is a parametrization of ∂ S, and from the chain rule it follows that

(G ◦ r)′(t) = G∗(r(t)) r′(t) = u′(t)
∂ G
∂ u
(r(t)) + v′(t)

∂ G
∂ v
(r(t)).

Because G is regular, the vectors Gu and Gv are linearly independent, and thus this derivative can only vanish
if the scalar quantities u′(t) and v′(t) simultaneously vanish. But this doesn’t happen, because we assumed
that r(t) is regular. So G ◦ r is a regular parametrization of ∂ S, and we can use it to compute the integral of F
along ∂ S:

∮

∂S
F · dr=

∫

I

F((G ◦ r)(t)) · (G ◦ r)′(t) d t

=

∫

I

F(G(r(t))) ·
�

u′(t)
∂ G
∂ u
+ v′(t)

∂ G
∂ v

�

d t

=

∫

I

�

u′(t)F(G(r(t))) ·
∂ G
∂ u
+ v′(t)F(G(r(t))) ·

∂ G
∂ v

�

d t

=

∫

I



F(G(r(t))) ·
∂ G
∂ u

,F(G(r(t))) ·
∂ G
∂ v

·

·



u′(t), v′(t)
�

d t

This last expression might look kind of scary, but by comparing with the definition of X(u, v), we see that we
have

∮

∂S
F · dr=

∫

I

X(r(t)) · r′(t) d t =

∮

∂D
X · dr=

∫∫

D
curlz(X) dA, (6.6)
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where the last step follows from Green’s theorem in the plane. So we’ve transformed the line integral
∮

∂S F ·dr
into a double integral of a curl. This is a good first step, and now we need to realize our double integral as a
surface integral. To this end, we notice that curlz(X) may be computed as

curlz(X) =
∂

∂ u

�

F(G(u, v)) ·
∂ G
∂ v

�

−
∂

∂ v

�

F(G(u, v)) ·
∂ G
∂ u

�

=
�

F∗
∂ G
∂ u

�

·
∂ G
∂ v
+
�

F(G(u, v)) ·
∂ 2G
∂ u∂ v

�

−
�

F∗
∂ G
∂ v

�

·
∂ G
∂ u
−
�

F(G(u, v)) ·
∂ 2G
∂ v∂ u

�

=
�

F∗
∂ G
∂ u

�

·
∂ G
∂ v
−
�

F∗
∂ G
∂ v

�

·
∂ G
∂ u

,

where

F∗ =













∂ F1

∂ x
∂ F1

∂ y
∂ F1

∂ z
∂ F2

∂ x
∂ F2

∂ y
∂ F2

∂ z
∂ F3

∂ x
∂ F3

∂ y
∂ F3

∂ z













is the Jacobian matrix of the map F: A→ R3. Further unwinding of curlz(X) is somewhat tedious, but you are
invited to verify the following fact.
Exercise 6.11. Using the definition of F∗, expand the above computation to show that

curlz(X) = curl(F) ·
�

∂ G
∂ u
×
∂ G
∂ v

�

.

This is great, because substitution into (6.6) tells us that
∮

∂S
F · dr=

∫∫

D
curl(F)(G(u, v)) · n(u, v) dA.

But the integral on the right is, by definition, the surface integral
∫∫

S curl(F) · dS. So we’ve verified (6.5)
(under our simplifying assumptions), and our proof is concluded.

6.3.2 Examples

Example 6.12. Stokes’ theorem can be particularly effective when we’re asked to compute a line integral
over a curve which is presented as a boundary. Consider the piecewise-linear curve C which is the boundary
of T , the triangle in R3 with vertices at A= (3,0, 0), B = (0,2, 0), and C = (0, 0,1). Say we want to compute
the integral of

F(x , y, z) :=
¬

sin(x2), e y2
+ x2, z4 + 2x2

¶

over C, with C oriented as ABCA. We’ll do this using Stokes’ theorem. First, notice that

curl(F) =

�

�

�

�

�

�

i j k
∂ /∂ x ∂ /∂ y ∂ /∂ z
sin(x2) e y2

+ x2 z4 + 2x2

�

�

�

�

�

�

=


0,−
∂

∂ x
(z4 + 2x2),

∂

∂ x
(e y2
+ x2)

·

= 〈0,−4x , 2x〉 .

So the vector field we need to integrate has simplified. We now have
∮

C
F · dr=

∫∫

T
curl(F) · dS=

∫∫

T
(curl(F) ·N) dS,

where N is the unit normal vector to T . Now you may recall that, in general, the plane passing through the
points (a, 0, 0), (0, b, 0), and (0,0, c), with none of a, b, c equal to 0, has equation

bc x + ac y + ab z = abc.

So T is contained in the plane 2x + 3y + 6z = 6. Having written this equation in standard form, we quickly
notice that 〈2,3, 6〉 is a normal vector for T (though not a unit normal vector). But we have

curl(F) · 〈2,3, 6〉= (0)(2) + (−4x)(3) + (2x)(6) = 0,
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so we must have curl(F) ·N= 0. We conclude that
∮

C
F · dr=

∫∫

T
(curl(F) ·N) dS = 0.

Notice that not only did we avoid computing the line integral of F directly, we were also able to avoid computing
a surface integral of curl(F), since this vector field turned out to be tangent to our surface. Also notice that,
since the flux of curl(F) through T is 0, the orientation of T didn’t matter.
Example 6.13. Here’s an example you probably hoped to never see again. In our two most recent homework
assignments we considered the surface

Sh,R := {(x , y, f (x , y)) : (x , y) ∈DR},

where DR is the disc of radius R in R2 centered at the origin, and

f (x , y) := h−
h
R2
(x2 + y2).

Specifically, we thought about the flux of the vector field

F(x , y, z) := 〈2y − 1, x(y − 2), 1− xz〉

through Sh,R. We now know that this flux can be computed as a vector surface integral:

flux=

∫∫

Sh,R

F · dS.

Now in the most recent homework assignment, you identified a vector potential G for F, and this affords us
an opportunity to use Stokes’ theorem, as we may write

∫∫

Sh,R

F · dS=

∫∫

Sh,R

curl(G) · dS=

∮

∂Sh,R

G · dr.

At this point we could recall the particular vector field G that you found and compute this line integral
explicitly, but let’s consider an alternative approach. We notice that, whatever the values of h and R, the
boundary ∂ Sh,R is precisely the boundary ∂DR in R2 ⊂ R3. This is a fact you verified in homework 2, and
holds because f (x , y) = 0 for any (x , y) ∈ ∂DR. Treating DR as a surface with upward-pointing normal vector
(so that the boundary orientation induced by DR on ∂DR agrees with that induced by Sh,R), we can use Stokes’
theorem again to see that

∮

∂Sh,r

G · dr=

∮

∂DR

G · dr=

∫∫

DR

curl(G) · dS=

∫∫

DR

F · dS.

So we notice that F is surface-independent: integrating F over any surface with oriented boundary ∂ Sh,R yields
the same value as integrating F over any other such surface. It is now straightforward to compute the integral
of F over DR. Notice that, since z = 0 along DR, F|DR

= 〈2y − 1, x(y − 2), 1〉. The unit normal vector to DR is
given by N= k, so we find that

F ·N= 〈2y − 1, x(y − 2), 1〉 · 〈0,0, 1〉= 1

along DR. So
∫∫

DR

F · dS=

∫∫

DR

(F ·N) dS =

∫∫

DR

1 dS = area(DR).

Since DR is a disc with radius R, this last value is simply πR2. So we find that
∫∫

Sh,R

F · dS= πR2,

independent of the value of h.
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It’s worth pointing out that the computation in the above example never made use of the particular vector
potential G that you computed; we simply needed to know that such a vector field existed. Poincaré’s lemma
is a particularly useful tool for these sorts of computations, as it allows us (under certain hypotheses) to
conclude that a vector potential exists without needing to compute it.
Example 6.14. In the previous example we observed that integrating our vector field F over DR would yield
the same result as integrating over Sh,R, since these two surfaces have the same oriented boundary. Indeed,
Stokes’ theorem tells us that any vector field which admits a vector potential enjoys this surface-independence.
Say F: A→ R3 is defined on some open subset A of R3 and admits a vector potential G: A→ R3. Then, if S1

and S2 are a pair of surfaces contained in A, we have
∫∫

S1

F · dS=

∫∫

S1

curl(G) · dS=

∮

∂S1

G · dr

=

∮

∂S2

G · dr=

∫∫

S2

curl(G) · dS=

∫∫

S2

F · dS,

where the second and fourth equalities follow from Stokes’ theorem. So we have another necessary condition
for a vector field to admit a vector potential: the field must be surface-independent. We will explore the
sufficiency of this condition next week, as well as an analogous condition (path-independence) for conservative
vector fields.

6.3.3 The geometric meaning of curl

Just as Green’s theorem gave us a physical/geometric interpretation of the quantity curlz(F), Stokes’ theorem
allows us to loosely understand why the vector field F is so named.
Remark. Sadly, I seriously doubt that we’ll have time to discuss this subsection in class. But I’ll leave it here
and encourage you to ask about it in office hours. In any case, this is a no-pressure, just-for-fun discussion;
you won’t be responsible for this material on a midterm or final.

Let’s start the game over, pretending that we haven’t yet defined curl(F). Now say we have a sufficiently
differentiable vector field F: R3→ R3 and we want to decide how much F "curls" at a point p0 = (x0, y0, z0).
The transition from two dimensions to three makes this question somewhat peculiar. In two dimensions, this
question could be answered with a number — positive numbers indicate counterclockwise rotation, negative
numbers mean clockwise rotation, and zero means no rotation at all. But in R3, our vector field could be
rotating in a number of ways; in some sense, rotation is a phenomenon we can only easily understand in
two dimensions. Whatever curl(F) is, we want it to permit the following interpretation: given any plane P0

through our point p0, curl(F) should be able to tell us how much F is curling in P0.

So we need curl(F) to be an object which pairs naturally with planes; vector fields are a good candidate.
Specifically, if curl(F) is a vector field, then for every plane P0 which passes through p0, we can consider the
number

curl(F)(p0) ·NP0
,

where NP0
is an oriented unit normal vector to P0. We can try to define curl(F) in such a way that this number

will measure the extent to which F is spinning about p0 in the plane P0.

So we’ve decided what type of algebraic object we’ll use to encode rotation: a vector field. Now we need
to actually define the vector field curl(F). One way to measure the extent to which F rotates about p0 in P0 is
to ask, on average, how much work F does along a circle of radius R> 0 centered on p0 and contained in P0.
The smaller we choose R> 0, the more accurate this measurement of the curl should be, so let’s say we want6

curl(F)(p0) ·NP0
= lim

R→0

1
area(DR)

∮

∂DR

F · dr,

6One fishy bit about this average that we’re computing is the fact that we’re dividing by the area of DR, rather than the length of ∂DR.
This is basically just to make the dimensions check out. The line integral over ∂DR computes work, and therefore will have dimension
[mass] · [length]2/[time]2. Dividing by the length of ∂DR leaves a factor of length in our quantity, so the quantity will vanish as R tends
to 0. Dividing instead by area avoids this problem.
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where DR ⊂ P0 is the disc of radius R centered at p0 in P0. Now Stokes’ theorem tells us that this is equal to

lim
R→0

1
area(DR)

∫∫

DR

(∇× F) · dS,

where ∇× F is just shorthand for

∇× F :=

�

�

�

�

�

�

i j k
∂ /∂ x ∂ /∂ y ∂ /∂ z

F1 F2 F3

�

�

�

�

�

�

:=


∂ F3

∂ y
−
∂ F2

∂ z
,
∂ F1

∂ z
−
∂ F3

∂ x
,
∂ F2

∂ x
−
∂ F1

∂ y

·

.

(Since we’re starting over in our search for curl(F), we don’t want to call this vector field curl right now.) Now
DR, being contained in P0, has unit normal vector given by NP0

, so

lim
R→0

1
area(DR)

∫∫

DR

(∇× F) · dS= lim
R→0

1
area(DR)

∫∫

DR

�

(∇× F) ·NP0

�

dS.

So we’re taking the limit of the average value of (∇× F) ·NP0
over the disc DR as this disc shrinks down to the

point p0. The result of this limit is just (∇× F)(p0) ·NP0
— the function whose average value we’re computing,

evaluated at the point to which all the discs are shrinking.

Okay, so what does all of this mean? We said we wanted to define the vector field curl(F) in such a way
that curl(F)(p0) ·NP0

would measure the extent to which F is curling around p0 in P0. But then we found, using
Stokes’ theorem, that this curling is measured by (∇× F)(p0) ·NP0

. So ∇× F is a perfectly good candidate for
curl(F)! Taking this much more geometric approach, we find it natural to define curl(F) :=∇×F, where again
the quantity on the right is just algebraic shorthand.

Remember that we initially defined curl(F) as a purely algebraic object, meant to encode a necessary
condition for conservativity. The point of this subsection is that Stokes’ theorem allows us to also interpret
curl(F) as a measurement for how much F rotates at the points in its domain — a feature which is fitting for a
vector field with this name.
Exercise 6.15. As an open-ended thought experiment, think about how you might extend this whole dis-
cussion to vector fields on R4, or even Rn. We said above that Clairaut’s theorem will give

�4
2

�

= 6 partial
differential equations which must be satisfied in order for a vector field to be conservative. These can be
encoded as a single six-dimensional vector field. On the other hand, how many measurements do we need to
take to determine the extent to which F is curling at a point p0 ∈ R4 (or Rn)? How do these measurements
relate to the conditions given by Clairaut’s theorem?
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7 Week 7
We’ll start this week with Gauss’s divergence theorem, which gives a Fundamental Theorem of Integral
Calculus in which surfaces play the boundary role, rather than the region role they played in Stokes’ theorem.
After some practice using the divergence theorem, we’ll make a return to R2. Namely, we’ll think about
the curl-free condition that conservative vector fields must satisfy, and consider just how far this necessary
condition is from being sufficient.

7.1 Day 18: The divergence theorem

Goals

By the end of today’s class, we should be able to do the following.
1. Sketch the proof of the divergence theorem in any dimension.
2. Use the divergence theorem to calculate flux through a surface.

Today we’ll prove another Fundamental Theorem of Integral Calculus, this time relating surface integrals
to triple integrals. Recall that Stokes’ theorem relates the surface integral of a derivative (specifically, the
curl) of a vector field to a line integral along the boundary of the surface. On the other hand, a closed surface
can bound a region, and then we can ask for an FTIC which treats the surface as a boundary. The result is the
divergence theorem, which we will prove and use today.

7.1.1 The divergence theorem

The divergence theorem applies to surfaces which bound closed regions in R3; just like last week, we’ll assume
that our regions have nonempty interior, whatever that means. As should any FTIC, the divergence theorem
allows us to trade this boundary in for a derivative: instead of integrating a vector field F over ∂W, we
integrate the divergence div(F) over all of W.

Theorem 7.1: The divergence theorem

LetW be a closed region in R3 whose boundary is a (possibly disconnected) surface ∂W , with outward-
pointing normal vector. If F: A→ R3 is a C1 vector field on some open set A containing W, then�

∂W

F · dS=

∫∫∫

W
div(F) dV. (7.1)

Remark. Just as with Green’s theorem, the divergence theorem requires that our vector field be defined
on the whole of the region W in question. So we cannot apply the divergence theorem, for instance, to an
inverse-square vector field if the point around which this vector field is centered is somewhere in W.
Proof of Theorem 7.1. As we did for Green’s theorem, we’ll prove the divergence theorem for boxes and claim
that this can be enhanced to a proof for a more general region W. The basic idea is as before: given some
ε > 0, we find boxes B1, . . . , BNε ⊂W (for some very large integer Nε� 0) such that the integrals in (7.1) may
be approximated by sums of integrals over the boxes:

�

�

�

�

�

�

�

�
∂W

F · dS−
Nε
∑

k=1

�
∂Bk

F · dS

�

�

�

�

�

�

�

<
ε

2
and

�

�

�

�

�

∫∫∫

W
div(F) dV −

Nε
∑

k=1

∫∫∫

Bk

div(F) dV

�

�

�

�

�

<
ε

2
.

Once we have these inequalities, (7.1) will hold for W, provided it holds for all boxes (which we will prove).
The tough part is probably showing that we can find the desired boxes B1, . . . , BNε in the first place.

Okay, so we need to prove that (7.1) holds under the assumption that W is a box in R3. Specifically, let’s
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write W = [x0, x1]× [y0, y1]× [z0, z1]. Notice that if F= 〈F1, F2, F3〉, then F= F1i+ F2j+ F3k, and thus we have�
∂W

F · dS=

�
∂W

(F ·N) dS =

�
∂W

F1(i ·N) dS +

�
∂W

F2(j ·N) dS +

�
∂W

F3(k ·N) dS. (7.2)

We investigate the three surface integrals on the right individually. We begin with
�
∂W F1(i ·N) dS. Now ∂W

has six faces, and we may summarize their unit normal vectors as follows:
Face {x = x0} {x = x1} {y = y0} {y = y1} {z = z0} {z = z1}

N −i i −j j −k k

So the dot product i ·N will only be nonzero along the faces {x = x0} and {x = x1}, and we find that�
∂W

F1(i ·N) dS =

∫∫

{x=x1}

F1 dS −
∫∫

{x=x0}

F1 dS.

Now the faces {x = x0} and {x = x1} admit parametrizations

G0(y, z) = (x0, y, z) and G1(y, z) = (x1, y, z),

respectively, where y0 ≤ y ≤ y1 and z0 ≤ z ≤ z1. It’s easy to check that these are regular parametrizations
with distortion factor 1, so, being kind of sloppy/skipping some steps, we observe that�

∂W

F1(i ·N) dS =

∫ z1

z0

∫ y1

y0

(F1(x1, y, z)− F1(x0, y, z)) d y dz.

Just as we did in the proof of Green’s theorem, we recognize the integrand as the result of a definite integral:�
∂W

F1(i ·N) dS =

∫ z1

z0

∫ y1

y0

∫ x1

x0

∂ F1

∂ x
(x , y, z) d x d y dz =

∫∫∫

W

∂ F1

∂ x
dV.

By completely analogous reasoning, we find that�
∂W

F2(j ·N) dS =

∫∫∫

W

∂ F2

∂ y
dV and

�
∂W

F3(k ·N) dS =

∫∫∫

W

∂ F3

∂ z
dV.

Substituting our findings back into (7.2), we see that�
∂W

F · dS=

∫∫∫

W

∂ F1

∂ x
dV +

∫∫∫

W

∂ F2

∂ y
dV +

∫∫∫

W

∂ F3

∂ z
dV =

∫∫∫

W
div(F) dV,

exactly as desired.
Just as we did with the two versions of Green’s theorem andwith Stokes’ theorem, we can use the divergence

theorem to deduce a geometric interpretation of the divergence of a vector field. You are encouraged to think
about this.

7.1.2 Examples

Example 7.2. Let’s use the divergence theorem to compute the flux of the vector field

F(x , y, z) = (x − z)i+ (y − x)j+ (z − y)k

through the boundary ∂W of the solid cylinder

W = {(x , y, z) : x2 + y2 ≤ a2, 0≤ z ≤ 1},

oriented with outward-pointing normal vector. Notice that ∂W has three components: the discs on top
and bottom, as well as the hollow cylinder defined by x2 + y2 = a2. So evaluating

�
∂W F · dS without the
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Figure 7.1: A surface S that we’d rather not parametrize.

divergence theorem would require that we compute three separate surface integrals. But according to the
divergence theorem, �

∂W

F · dS=

∫∫∫

W
div(F) dV.

Now div(F) = 1+ 1+ 1= 3, so the integral of div(F) over W is 3 vol(W) = 3πa2. We conclude that�
∂W

F · dS= 3πa2.

Example 7.3. Let’s consider the surface S defined by
S := {(x , y, z) : (

p

x2 + y2 − 4)2 + (z − 1)2 = 4, z ≥ 0}.

This terrifying surface is seen in Figure 7.1. We want to compute the flux of F(x , y, z) := 〈2x y,−y2, 1〉 through
S, with outward-pointing normal vector. We’d really like to avoid doing this directly, so our mind turns to the
divergence theorem. Applying this should make our lives a good bit easier, since

div(F) =
∂

∂ x
(2x y) +

∂

∂ y
(−y2) +

∂

∂ z
(1) = 2y − 2y + 0= 0.

The main problem we have is that S is not the boundary of any region in R3. But consider the region W
defined by

W := {(x , y, z) : (
p

x2 + y2 − 4)2 + (z − 1)2 ≤ 4, z ≥ 0}.
One component of ∂W is S, and we let A denote the other component. This is the annulus seen at the bottom
of S in Figure 7.1, and corresponds to setting z = 0. A little algebraic manipulation shows that

A= {(x , y, 0) : (4−
p

3)2 ≤ x2 + y2 ≤ (4+
p

3)2},

so A is bounded by the circles of radius 4+
p

3 and 4−
p

3 centered at the origin in the x y-plane. Now the
divergence theorem tells us that

0=

∫∫∫

W
div(F) dV =

∫∫

S
F · dS+

∫∫

A
F · dS,

where S has the outward-pointing normal vector and A has the downward-pointing normal vector (convince
yourself that this is the correct orientation). So the oriented unit normal vector for A is −k, and we see that
F ·N≡ −1 on A. Altogether,

∫∫

S
F · dS= −

∫∫

A
F · dS= −

∫∫

A
−1 dS = area(A).

Now the area of an annulus is given by π(R2 − r2), where R is the radius of the outer circle and r is the radius
of the inner circle. So

area(A) = π
�

(4+
p

3)2 − (4−
p

3)2
�

= 16π
p

3.

Finally, we conclude that
∫∫

S F · dS= 16π
p

3 . This was a lot of work, but I think it’s still better than a direct
computation. In the end, we didn’t have to find any antiderivatives.
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7.2 Day 19: Connections to topology

Goals

By the end of today’s class, we should be able to do the following.
1. Describe which open regions in R2 admit curl-free-but-not-conservative vector fields.
2. Discuss the relationship between the integral of F over C and the topological type of C, where F

is a curl-free vector field and C is a closed loop in R2.

A quick recap of the tour through integral vector calculus we’ve taken over the last few weeks is to say that
we introduced some derivatives for vector fields, integrated them, and then stated some FTICs. Of course this
description lacks nuance, but it hits the highlights. Today we want to back up and think about the derivatives
grad, curl, and div again. Remember that we defined curl as a means of encoding a necessary condition for a
vector field to be conservative: in R3 we have

F= gradφ ⇒ curl(F)≡ 0.

Similarly, divergence gives us a necessary condition for a vector field to admit a vector potential:

F= curlG ⇒ div(F)≡ 0.

Poincaré’s lemma told us that if the domain of our vector field is contractible — for instance, if the domain is
all of R3 — then these necessary conditions are actually sufficient. But we’ve also seen curl-free vector fields
which don’t admit scalar potentials and divergence-free vector fields which don’t admit vector potentials.
These vector fields necessarily have domains which are not contractible, and our goal today is to investigate
what features of the domain allow these strange vector fields to exist.

7.2.1 How will we distinguish regions and curves?

Throughout today’s discussion, we’re going to refer to the topology of the domain of a vector field, or of a
curve or surface over which we want to integrate the vector field. We won’t be precise about what this means,
but will instead consider two open regions R1,R2 ⊂ Rn to be topologically equivalent if we can continuously
deformR1 intoR2. For instance, we’ll consider the punctured plane R2 \{(0,0)} to be topologically equivalent
to the region we get by deleting a disc of some positive radius from R2. We continuously deform the former
into the latter by gradually changing the size of the hole in our region.

Once we’ve fixed a region R, we’ll consider two parametrized curves in R to be topologically equivalent if
we can continuously deform one parametrized curve into the other within R. Some comments about this are
(1) the orientations of the curves matter, so a parametrized curve need not be topologically equivalent to

the same curve with the opposite orientation;
(2) the continuous deformation must happen within R, so a pair of curves can be topologically distinct in

one region, but topologically equivalent when considered in a larger region;
(3) this notion of topological equivalence is reasonably close to regular homotopy (but we don’t necessarily

require our curves to be regular).
Even though an open region in Rn might be "continuously deformed" to a curve, we’re not going to consider
regions and curves to be topologically equivalent to one another: regions can only be equivalent to other
regions, and curves to other curves.

We can write down a similar notion of topological equivalence for parametrized surfaces, but today we’re
going to focus on curves and regions in R2 — if only for the sake of drawing pictures.

Disclaimer. As a general remark, we’re just telling a nice story today, and not being super careful about
details. The details can get somewhat technical, so we leave this to a course on topology. The material we
discuss today can be accepted as a story, but maybe not as precise mathematical facts. (Indeed, a lot of things
won’t even be stated precisely.)
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7.2.2 Poincaré’s lemma and integrals along closed loops

Back in Week 4, we stated Poincaré’s lemma for vector fields defined on contractible subsets of R3. Let’s write
down Poincaré’s lemma for vector fields on R2.

Theorem 7.4: Poincaré’s lemma in R2

Suppose A⊂ R2 is contractible and F: A→ R2 is a C1-vector field. Then F is conservative if and only if
curlz(F)≡ 0 on A.

From the definition of curlz , we knew one direction of this statement: if F is conservative, then curlz(F) = 0.
Poincaré’s lemma gives us the converse: a curl-free vector field on a contractible region in fact must be
conservative. We saw by way of example that this need not be true for regions which are not contractible.
Example 7.5. Consider the vector field F: R→ R2 defined by

F(x , y) :=
1

x2 + y2
〈−y, x〉,

where R= R2 \ {(0,0)}. We’ve previously computed that curlz(F)≡ 0, but we’ve also shown that F cannot be
conservative. We refer to this vector field as a vortex vector field.

You may recall that we proved that the above vector field fails to be conservative by showing that it admits
closed orbits: parametrized curves which are everywhere tangent to F. The problem is actually somewhat
simpler than that. Consider integrating a conservative vector field ∇φ over a closed loop C in R2. If C is
parametrized by r: [a, b]→ Rn, then

∮

C
∇φ · dr=

∫ b

a

∇φ(r(t)) · r′(t) d t =

∫ b

a

d
d t
(φ(r(t))) d t = φ(r(b))−φ(r(a)).

The second equality uses the definition of the gradient given in Week 4. But since r parametrizes the closed
curve C, we must have r(b) = r(a). So the integral of ∇φ over C is 0, and we have the following important
fact:

Fact. The integral of a conservative vector field over a closed loop is 0.
We can verify that our vortex vector field F is not conservative with the following computation.
Exercise 7.6. Let C be the unit circle in R2 centered at (0,0), with counterclockwise orientation, and let F be
the vector field defined in Example 7.5. Show that

∮

C F · dr= 2π, and conclude that F is not conservative.

In fact, one can show that conservative vector fields are precisely those which integrate to zero over any1
closed curve.
Exercise 7.7. Show that a vector field F: R→ Rn, where R is a region in Rn, is conservative if and only if
∮

C F · dr= 0 for any closed curve C ⊂R.
We point out that our curl-free-but-not-conservative vector field is only allowed to exist because our

domain R2 \ {(0,0)} has a hole. In a region R which has no holes (such as R2), every simple closed curve C is
going to enclose a subregion R′. If we have a curl-free vector field F, then we can use Green’s theorem to
deduce that the integral of F over C is zero:

∮

C
F · dr=

∫∫

R′
curlz(F) dA= 0.

If we want to produce a curl-free-but-not-conservative vector field on R, we need F to integrate to a nonzero
number over some simple closed curve C in R, and now we see that this can only happen if C fails to bound
a subregion of R. In R2, having closed loops which fail to bound subregions corresponds precisely with a
failure of simple connectivity.

Definition. We’ll say that an open region R in R2 is simply connected if every closed loop in C can be

1Maybe we need to use a word like "rectifiable" here to make things make sense, but see the disclaimer.
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Figure 7.2: Curves C1, C2, and C3 have winding numbers −2, −1,
and 0, respectively, about the square hole in R.

continuously deformed to a point.

Said another way, a region in R2 is simply connected if it is connected and contractible. So Poincaré’s
lemma holds for simply connected regions, but for non-simply connected regions we can produce curl-free
vector fields which evaluate to nonzero numbers on closed loops. Loosely, we do this by writing down a vortex
vector field for each hole in the region.

7.2.3 Curl-free vector fields care only about topological type

Okay, so our ability to write down curl-free vector fields which are not conservative corresponds to the
existence of holes in our region R. Let’s say we have an open region R in R2 which is connected and has n
holes, for some n≥ 0. A natural question then asks how many different curl-free-but-not-conservative vector
fields R admits. Let’s delay this question for a moment and start with something slightly simpler.

Our first goal is to show that if F is a curl-free vector field on R and C is an oriented closed curve in R,
then

∮

C F · dr depends only on the topological type of C. That is, if we make continuous deformations to C, we
won’t change the value of this integral. Our argument will necessarily be very informal.

Before we can state our claim, we need to describe the notion of winding number. As with so many
things we discuss today, this is something that could be defined formally, but for which we’ll just give an
informal idea.

Definition. Let p be a point in R2, and let C be a closed, oriented (but not necessarily simple) curve
in R2 which does not pass through p. We obtain the winding number of C about p by counting the
number of times C winds about p in a counterclockwise manner. This is a signed count, so that clockwise
rotations of C about p count negatively.

We will speak informally of the holes in our region R; the winding number of a closed, oriented curve C
about a hole is simply the winding number of C about any point in the hole.
Example 7.8. Consider the region R in Figure 7.2. This region has one hole, and we can easily compute the
winding numbers of a curve about this hole. Because C1 winds twice clockwise about the hole, its winding
number is −2; the curve C2 has some interesting behavior away from the hole, but ultimately makes one
counterclockwise rotation about the hole, so its winding number is 1; finally, C3 does not wind around the
hole at all, so its winding number is 0.

Certainly the winding number isn’t affected by continuous deformations; our plan is to show that if
curlz(F)≡ 0, then

∮

C F · dr depends only on the winding numbers of C about the various holes of R. To this
end, let’s label the holes of R with the names H1, . . . , Hn and choose pairwise disjoint, simple, closed, oriented
curves C1, . . . ,Cn so that the winding number of Ci about H j is 1 if i = j and 0 if i 6= j. Morally, we want Ck to
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Figure 7.3: The curves C1 and C2 are "boundary parallel."

be the boundary of the hole Hk, oriented counterclockwise. The problem is that ∂ Hk need not be very nice —
for instance, if our hole is just a puncture, then ∂ Hk is empty. Figure 7.3 gives an example where n= 2.

Now let’s fix a C1-vector field F: R→ R2 which has curlz(F)≡ 0 on R. For 1≤ k ≤ n we define

Ik :=

∮

Ck

F · dr.

The moral of our earlier discussion is that because Ck encloses a hole in R (rather than a subregion of R),
this integral need not be zero. At last we make the following (still-not-quite-precise) claim about the integral
of F over an arbitrary closed curve C in R.
Proposition 7.9. Let C ⊂ R be an oriented, closed curve, and let F: R → R be a curl-free vector field on an
open region R ⊂ R2. Suppose that R has n holes, with curves C1, . . . ,Cn as identified above, and define the values
I1, . . . , In ∈ R as above. Then

∮

C
F · dr= w1 I1 + · · ·+wn In,

where wk is the winding number of C about the kth hole of R.
Since we haven’t bothered to precisely define all of the words in our proposition, we certainly won’t

attempt a precise proof, but we can give an informal argument. In fact, we won’t even try to prove the claim
for an arbitrary curve C, but instead just consider some cases and claim that the main ideas of the general
argument are all covered by these cases.

Case 1. First, let’s suppose that C is simple, oriented counterclockwise, and encloses the holes Hk1
, . . . , Hkm

, for
some collection of integers {k1, . . . , km} ⊂ {1, . . . , n}. Figure 7.4 shows an example where C encloses holes H1

and H2. We also assume that C does not intersect any of the curves Ck1
, . . . ,Ckm

, though such intersections don’t
create much trouble. What we should see from Figure 7.4 is that there is a subregionR′ ofR which is bounded
by C and the curves Ck1

, . . . ,Ckm
. Of course the curves Ck1

, . . . ,Ckm
don’t carry the boundary orientation induced

by R′, so we can think of this boundary as
∂R′ = C t (−Ck1

)t · · · t (−Ckm
).

We know that F is curl-free, so we can apply Green’s theorem to F over the region R′ to find that

0=

∫∫

R′
curlz(F) dA=

∮

∂R′
F · dr=

∮

C
F · dr−

∮

Ck1

F · dr− · · · −
∮

Ckm

F · dr

=

∮

C
F · dr− Ik1

− · · · − Ikm
.

Rearranging this leads us to the conclusion that
∮

C
F · dr= Ik1

+ · · ·+ Ikm
,
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Figure 7.4: The curve C has winding number 1 about each hole.

which matches the conclusion of Proposition 7.9, since the winding number of C about Hki
is 1, while the

winding number of C about holes not enclosed by C is 0.

Case 2. Next, let’s consider the case where C is no longer required to be simple, but encloses just one hole
Hk. This case is depicted in Figure 7.5a. Notice that we no longer require C to carry a counterclockwise
orientation, but we once again make the mild assumption that C does not intersect Ck. The trick this time
is to break C into several simple closed curves, as seen in Figure 7.5b. We can classify these subcurves into
(a) those which enclose Hk with a counterclockwise orientation; (b) those which enclose Hk with a clockwise
orientation; (c) and those which don’t enclose Hk at all. It should be reasonably believable that the winding
number of C about Hk is then given by the number of subcurves of type (a) minus the number of type (b).
Green’s theorem will pretty easily show that the integral of F over subcurves of type (c) is 0. We can then
analyze the subcurves of types (a) and (b) as in Case 1. What we’ll find is that each subcurve of type (a)
contributes Ik to our integral, while each subcurve of type (b) contributes −Ik. The upshot is that

∮

C
F · dr= (b− a)Ik,

where a and b are number of subcurves of types (a) and (b), respectively. But wk = b − a, so we have the
conclusion of Proposition 7.9!

Case 3. Finally, we consider a curve C which is allowed to enclose holes Hk1
, . . . , Hkm

and is not required to
be simple. For instance, see Figure 7.6. We compute

∮

C F · dr in much the same way we did in Case 2. We
start by breaking C into simple closed curves D1, . . . ,DN . For each of these, we compute

∮

Di
F · dr as we did in

(a) A curve with winding number −2. (b) A pair of curves, each with winding number −1.

Figure 7.5: A closed curve which fails to be simple can be broken
into simple closed curves.
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Figure 7.6: The curve C is not simple and encloses multiple holes.

Case 1: we consider a region bounded on one side by Di , and on the other by the curves which correspond to
the hole(s) enclosed by Di . After accounting for orientations, we should find that

∮

Di

F · dr= w1(Di)I1 + · · ·+wn(Di)In, (7.3)

where w j(Di) is the winding number ofDi about the hole H j . It’s probably not hard to believe that the winding
numbers of C can be obtained by adding up those of the constituent subcurves:

w j(C) = w j(D1) + · · ·+w j(DN ).

Then we get the desired conclusion by summing the equations (7.3) as i varies from 1 to N .

Let’s recap the result we’ve sketched here. We want to show that if F: R→ R2 is a curl-free vector field and
C is a closed curve in R, then

∮

C F · dr depends only on the topological type of C. That is, the value given by
this integral does not change when we make continuous deformations to C. Our argument in support of this
claim showed that

∮

C F · dr could be computed in terms of the winding numbers of C about the various holes
ofR. We then blackboxed the fact that the winding numbers are unchanged by continuous deformation, since
this fact seems clear enough from pictures. In summary: curl-free vector fields care only about topological
type.

7.2.4 Other topological considerations

The above discussion, while interesting, leaves mostly unexplored the question of just how many curl-free-but-
not-conservative vector fields we can write down on a connected, open region R in R2. Of course the answer
is either 0 (if R is simply connected) or infinitely many (if R has at least one hole): once we have one vector
field which works, we can scale it by any nonzero real number. What we’re really asking is the somewhat
more nebulous question of how many independent curl-free-but-not-conservative vector fields R will admit.
We won’t address this in detail here, but the loose answer is that we get one such vector field Fk for each hole
Hk in R, and any curl-free vector field other than these can be written as a linear combination of F1, . . . ,Fn,
plus the conservative vector fields on R. This answer can be made more precise once we have a bit more
linear algebra under our belts.

There are also a couple of generalizations of the story we’ve told today that are interesting. For instance,
for an open region R in R3, we can ask for curl-free-but-not-conservative vector fields, and we can also ask
for vector fields which are divergence-free, but do not admit a vector potential. As in two dimensions, the
existence of such vector fields is dictated by the topology of R. We again find curl-free-but-not-conservative
vector fields when R fails to be simply connected, and divergence-free-but-without-vector-potential vector
fields arise when some two-dimensional version of simple connectivity fails. Basically, the former vector
fields exist when we have deleted a line, and the latter exist when we delete a hole. One can then show that
integration of these vector fields over closed curves or surfaces, respectively, depends only on the topological
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type of the underlying curve or surface.

We can also ask these questions for vector fields on surfaces. Say we have a surface S and a vector field F
for which curl(F) is always tangent to S. Does this mean that we can find a function φ : R3 → R such that
projTpSF ≡ ∇(φ|S)? If not, can we at least say that the integral of F over a closed curve C depends only on
the topological type of C? Given a surface S ⊂ R3, how many vector fields can we write down whose curl is
everywhere tangent to S, but which are not conservative? You are invited and encouraged to think about all
of these questions.
Exercise 7.10. Think about — and maybe even answer — the various questions raised in this subsection.
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8 Week 8
We’ll kick our week off with a midterm and follow that up with a step towards the abstract. The midterm
wraps up part two of our course, and we then begin part three, which will attempt to generalize some of the
key points of part two to any dimension. Ultimately, the goal of this last portion of the course is to prove a
generalized Stokes’ theorem. We’ve described Green’s theorems, Stokes’ theorem (for surface integrals),
and the divergence theorems as different versions of the Fundamental Theorem of Integral Calculus. What we
want now is a version of these results which holds in all dimensions, and from which we may recover these
concrete theorems — one FTIC to rule them all!

There is a lot of road we must cover before we can even state the generalized Stokes’ theorem that we’re
after. FTICs come in the form of an integral equation, and allow us to trade boundaries for derivatives, so
we’ll need to identify:
(1) the objects which will serve as our integrands;
(2) the domains over which we will integrate;
(3) how to differentiate our integrands;
(4) how to determine the boundaries of our domains.
In our two class meetings this week (after the midterm), we’ll address item (1) by introducing differential
forms and some of the algebraic operations that can be performed on them.

As a final note before we begin, let’s save ourselves some adjectives by making the following assumption.

Everything is smooth. For the duration of this course, we don’t want to worry about just how differen-
tiable a map is — such considerations are somewhat beside the points we want to make. Thus, unless
otherwise stated, all maps of any sort (scalar functions, vector fields, coordinate systems, et cetera) will
be assumed to be infinitely differentiable, or smooth.

8.1 Day 20: Midterm 2

Goals

By the end of today’s class, we should be able to do the following.
1. Solve the problems on the midterm.

Here are the midterm 2 problems and solutions.
1. The purpose of this problem is to prove that conservative vector fields are precisely those vector fields1

which are path-independent. That is, we will show that F: A→ Rn is conservative if and only if, for any
two points P,Q ∈ A, the line integral of F over an oriented curve from P to Q is independent of the choice
of curve. Here A is an open subset of Rn.
(a) Suppose that F is conservative, and write F = ∇φ for some sufficiently differentiable function

φ : A→ R. Let C ⊂ A be any oriented, regular curve from P to Q. Prove that
∫

C
F · dr= φ(Q)−φ(P).

Solution. We begin by choosing a simple, regular parametrization r: [a, b]→ A of C, with
r(a) = P and r(b) =Q. Then we have

∫

C
F · dr=

∫ b

a

F(r(t)) · r′(t) d t =

∫ b

a

∇φ(r(t)) · r′(t) d t.

1Let’s say that vector field means infinitely differentiable vector field, so that we don’t have to worry about C1 versus C2 versus whatever.
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According to the definition of the gradient, ∇φ(r(t)) · r′(t) = d
d t (φ(r(t))). So we have

∫

C
F · dr=

∫ b

a

d
d t
(φ(r(t))) d t = [φ(r(t))]ba

= φ(r(b))−φ(r(a)) = φ(Q)−φ(P),

as desired. So F is path-independent.

(b) Conversely, suppose that F is path-independent. That is, assume that if C1,C2 ⊂ A are oriented
curves with the same oriented boundary, then

∫

C1
F ·dr=

∫

C2
F ·dr. Now define φ : A→ R as follows.

Fix an arbitrary point P ∈ A and declare φ(P) = 0. For any Q ∈ A, define

φ(Q) :=

∫

C
F · dr,

where C is an oriented curve in A from P to Q. (We are assuming that A is path-connected, meaning
that any two points in A may be connected by a (regular) curve.)
i. Prove that φ is a well-defined function. (That is, each input Q ∈ A has only one output.)

Solution. What we need to show here is that the choice of curve C made in the definition
of φ(Q) does not affect the outcome. But this is precisely what path-independence
guarantees. Namely, if C′ is some other curve in A from P to Q, then we know that

∫

C′
F · dr=

∫

C
F · dr,

and thus we may define φ(Q) using either curve.

ii. Use the Fundamental Theorem of Calculus to prove that F=∇φ.

Solution. We think about the derivative of φ(r(t)), where r: I → A is an arbitrary regular
parametrized curve in A. We can extend our parametrized curve so that r(t0) = P for
some particular value t0. This means that r parametrizes a curve from P to r(t), for any
t ∈ I , and thus we have

φ(r(t)) =

∫ t

t0

F(r(u)) · r′(u) du.

(We use the variable u since t is already in use.) We compute the derivative using the
Fundamental Theorem of Calculus:

d
d t
(φ(r(t))) =

d
d t

�

∫ t

t0

F(r(u)) · r′(u) du

�

= F(r(t)) · r′(t).

But this equation which is satisfied by F is precisely the equation we expect the gradient
of φ to satisfy! So we conclude that F=∇φ.

2. The open upper half plane H is the subset of R2 defined by
H := {(x , y) : y > 0}.

Given a region R ⊂H, the hyperbolic area of R is defined to be:

hArea(R) :=

∫∫

R

1
y2

dA,

where dA is the usual Euclidean area form.
(a) Use Green’s theorem to rewrite the hyperbolic area of R as

hArea(R) =
∮

∂R
F · dr

for some vector field F.
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Solution. We want a vector field F = 〈F1, F2〉 which has curlz(F) = y−2. Given such a vector
field, Green’s theorem tells us that

∮

∂R
F · dr=

∫∫

R
curlz(F) dA=

∫∫

∂R

1
y2

dA= hArea(R).

So we’re trying to solve the partial differential equation
1
y2
= curlz(F) =

∂ F2

∂ x
−
∂ F1

∂ y
.

As suggested by the hint, we take F2 ≡ 0, so that we’re now trying to solve ∂ F1
∂ y = −y−2. But

this is easy enough: we can just take F1(x , y) = y−1. So we find that

hArea(R) =
∮

∂R




y−1, 0
�

· dr.

(b) Consider the region T ⊂H depicted here:

Each of the curves C1, C2, and C3 is a semicircle whose center is on the x-axis; C1 and C2 both pass
through A; C2 and C3 both pass through B; and C3 and C1 both pass through C . Use your work from
part (2a) to show that the hyperbolic area of T is π.

Solution. Let’s start by proving the following claim:
Claim. If C is a semicircle in H centered on the x-axis and oriented counterclockwise,
then

∫

C F · dr= −π, where F= 〈y−1, 0〉.
Indeed, such a semicircle C admits the parametrization

r(t) = (c + R cos t, R sin t), 0≤ t ≤ π,

where R and (c, 0) are the radius and center of C, respectively. Having been motivated by
polar coordinates, this parametrization is evidently simple; by observing that ‖r′(t)‖ ≡ R, we
see that r is regular. Then

∫

C
F · dr=

∫ π

0

F(r(t)) · r′(t) d t

=

∫ π

0

〈(R sin t)−1, 0〉 · 〈−R sin t, R cos t〉 d t

=

∫ π

0

−1 d t = −π.

Given this claim (and our work in part (2a)), we can easily compute hArea(T ):

hArea(T ) =
∮

∂T
〈y−1, 0〉 · dr=

∫

C1

〈y−1, 0〉 · dr+

∫

C2

〈y−1, 0〉 · dr+

∫

C3

〈y−1, 0〉 · dr,
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where C1 is oriented counterclockwise, while C2 and C3 are oriented clockwise. From this it
follows that

hArea(T ) = −π+π+π= π.

3. Let F,G: R3→ R3 be defined by

F(x , y, z) = 〈y2, 2z + x , 2y2〉 and G(x , y, z) = 〈xz, 1
2 x2, 0〉.

Find an equation for a plane P in R3 which passes through (0, 0,0) and has the property that
∮

∂R
F · dr= 0 and

∮

∂R
G · dr= 0

for every region2 R lying in P.

Solution. Since P passes through (0,0, 0), it can be described by an equation of the form ax +
b y + cz = 0, for some a, b, c ∈ R not all equal to 0. Moreover, the vector n = 〈a, b, c〉 is then
perpendicular to P. Now suppose that both curl(F) and curl(G) are perpendicular to n, and let R
be some (reasonably nice) region in P. Then, according to Stokes’ theorem,

∮

∂R
F · dr=

∫∫

R
curl(F) · dS=

∫∫

R
(curl(F) ·N) dS = 0,

and
∮

∂R
G · dr=

∫∫

R
curl(G) · dS=

∫∫

R
(curl(G) ·N) dS = 0.

So we’ll get the desired properties if we choose n (and thus N) to be perpendicular to both curl(F)
and curl(G), for all points (x , y, z). Let’s compute curl(F) and curl(G). We have

curl(F) =

�

�

�

�

�

�

i j k
∂ /∂ x ∂ /∂ y ∂ /∂ z

y2 2z + x 2y2

�

�

�

�

�

�

= 〈4y − 2, 0,1− 2y〉= (2y − 1)〈2, 0,−1〉

and

curl(G) =

�

�

�

�

�

�

i j k
∂ /∂ x ∂ /∂ y ∂ /∂ z

xz x2/2 0

�

�

�

�

�

�

= 〈0, x , x〉= x〈0,1, 1〉.

So the vectors curl(F) and curl(G) are not constant, but they are always parallel to 〈2,0,−1〉 and
〈0, 1,1〉, respectively. Thus they are both perpendicular to

〈2,0,−1〉 × 〈0, 1,1〉=

�

�

�

�

�

�

i j k
2 0 −1
0 1 1

�

�

�

�

�

�

= 〈1,−2, 2〉

at all points (x , y, z). So we can take n = 〈1,−2, 2〉, and thus we see that if P has equation
x − 2y + 2z = 0 , then P passes through (0,0, 0) and has

∮

∂R
F · dr= 0 and

∮

∂R
G · dr= 0

for every region R lying in P.

4. In this problem we consider the vector field F: R3 \ {(0,0, 0)} → R3 defined by

F(x , y, z) =
1

(x2 + y2 + z2)3/2
〈x , y, z〉.

2Assume that ∂R is a collection of nice curves, oriented using the boundary orientation. You can also assume that R admits a nice
parametrization, but this isn’t needed.
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Our goal is to compute
�
∂W F · dS, where W is the region defined by

W :=
¦

(x , y, z) : (
Æ

(x − R)2 + y2 − R)2 + z2 ≤ r2
©

,

for some numbers 0< r < R. It’s possible to compute this integral by parametrizing ∂W, but we’ll use
the divergence theorem.
(a) Show that the origin is contained in W, but not in ∂W.

Note: Once we know this, we can find a number ρ > 0 so that the ball Bρ with radius ρ centered at
(0, 0,0) is contained in W, but does not touch ∂W.

Solution. Notice that (0, 0,0) satisfies the defining inequality of W:

(
Æ

(0− R)2 + 02 − R)2 + 02 = (
p

R2 − R)2 = 0≤ r2,

so (0,0, 0) ∈W. But the boundary ∂W is defined by the equation

(
Æ

(x − R)2 + y2 − R)2 + z2 = r2,

which (0,0, 0) clearly does not satisfy. So (0,0, 0) is in W but not ∂W.

(b) Let R be the region obtained by deleting Bρ from W , where ρ is as chosen in part (4a). Show that
div(F)≡ 0 on R.

Solution. Wherever F and its various derivatives are defined, the divergence of F is given by

div(F) =
∂

∂ x

�

x
(x2 + y2 + z2)3/2

�

+
∂

∂ y

�

x
(x2 + y2 + z2)3/2

�

+
∂

∂ z

�

x
(x2 + y2 + z2)3/2

�

=
(x2 + y2 + z2)3/2 − 3x2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
+
(x2 + y2 + z2)3/2 − 3y2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3

+
(x2 + y2 + z2)3/2 − 3z2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3

=
3(x2 + y2 + z2)3/2 − 3(x2 + y2 + z2)(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
= 0.

Since F is defined everywhere except (0,0, 0), the same is true of div(F). Finally, since the
origin is in Bρ, this point is not in R, and thus div(F) is defined and equal to 0 everywhere
within R.

(c) Use the divergence theorem to prove that�
∂W

F · dS=

�
∂Bρ

F · dS.

Each surface uses the corresponding boundary orientation.

Solution. The boundary of R has two components: ∂W and ∂Bρ. The boundary orientation
of R gives ∂W the outward-pointing normal vector (as would W), but the orientation on
∂Bρ is inward-pointing, because the normal vector which points into Bρ points out of R. So
the divergence theorem tells us that

∫∫∫

R
div(F) dV =

�
∂W

F · dS−
�
∂Bρ

F · dS,

where the surfaces over which we integrate on the right are oriented as the boundaries of W
and Bρ, respectively. But since div(F)≡ 0 on R, the triple integral on the left is of course 0,
so the desired equality follows.
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(d) Use the previous parts (and some computation) to show that�
∂W

F · dS= 4π.

Solution. We’ve now reduced our original surface integral to an integral over ∂Bρ, which has
unit normal vector N given by

N(x , y, z) =
1

p

x2 + y2 + z2
〈x , y, z〉.

Now �
∂W

F · dS=

�
∂Bρ

F · dS=

�
∂Bρ

(F ·N) dS,

so let’s compute F ·N on ∂Bρ. We have

F(x , y, z) ·N(x , y, z) =
1

(x2 + y2 + z2)3/2
1

p

x2 + y2 + z2
〈x , y, z〉 · 〈x , y, z〉

=
x2 + y2 + z2

(x2 + y2 + z2)2
=

1
x2 + y2 + z2

=
1
ρ2

,

where the last equality uses the fact that ∂Bρ is the sphere of radius ρ centered on the origin.
So �

∂W

F · dS=

�
∂Bρ

1
ρ2

dS =
1
ρ2

area(∂Bρ) =
4πρ2

ρ2
= 4π,

as desired.

(e) Explain why the following argument is wrong. First, div(F)≡ 0, so Poincaré’s lemma says that F
has a vector potential G. So we can use Stokes’ theorem:�

∂W

F · dS=

�
∂W

curl(G) · dS=

∮

∂ (∂W)
G · dr.

But ∂W is a closed surface, so it doesn’t have a boundary: ∂ (∂W) = ;. Therefore this last integral
is 0, and we find that the surface integral in question evaluates to 0.

Solution. The error is in the very first claim. Namely, Poincaré’s lemma only guarantees
that divergence-free vector fields admit vector potentials on contractible domains. Since the
domain of F is not contractible, we cannot use the fact that F is divergence-free to conclude
that F has a vector potential. Indeed, the fact that the surface integral of F over the closed
surface ∂W is nonzero demonstrates that F does not admit a vector potential.

Such fun. Time for a more abstract take on all of this!

8.2 Day 21: Covectors and differential 1- and 2-forms

Goals

By the end of today’s class, we should be able to do the following.
1. Define covectors and differential 1-forms on Rn.
2. State the definition of the integral of a 1-form over a curve in Rn.
3. Motivate the definition of differential 2-forms on Rn.

As outlined above, we will now begin our attempt to generalize part two of the course to any dimension.
The quick outline of part two is that we: introduced vector fields and their derivatives; defined integration
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of vector fields over curves or surfaces; and finally expressed versions of the FTIC for these vector integrals.
We’ve said before that vector fields can only be integrated over domains which have either dimension 1 or
codimension 1, so we’ll need a more complicated gadget than a vector field to serve as our integrand in this
theory. Differential forms are precisely these gadgets.

A warning. It’s difficult to give an intrinsic motivation for the material we’re going to cover over the next
few days. I’ll do my best to give geometric interpretations for the objects we define, but we’re also going
to be developing a bit of algebraic machinery, and at times it may be difficult to match the algebraic
maneuvers to their geometric meaning. You are strongly encouraged to read and reread this material,
work the optional exercises, and ask questions. The final two weeks of the course will rely heavily on
the ideas introduced in the next few days.

8.2.1 Covectors and differential 1-forms

We start by giving an abstract definition of covectors.

Definition. A covector on Rn is a linear map λ: Rn→ R. That is, λ is a map which satisfies

λ(v+w) = λ(v) +λ(w) and λ(cv) = cλ(v),

for any vectors v,w ∈ Rn and any scalar c ∈ R. We denote the collection of all covectors on Rn by (Rn)∗.

With a sufficiently strong background in linear algebra, we can develop our entire theory of covectors
from the above definition. But since we want to minimize linear algebra expectations, we’ll take a slightly
more grounded approach.
Example 8.1. We can define a covector d x on R3 which simply gives the x-coordinate of a vector:

d x









a
b
c







= a.

You should verify that d x : R3→ R is a linear map. We similarly define d y and dz.
Example 8.2. Generalizing Example 8.1 to any dimension, we can define a covector d x k on Rn for each
1≤ k ≤ n. In words, d x k(v) gives the kth component of v. As an equation, this is most easily written as a dot
product:

d x k(v) := v · ek, (8.1)
where ek is the kth standard basis vector for Rn. We refer to the covectors d x1, . . . , d xn as the standard
covectors on Rn.
Remark. The collection (Rn)∗ of covectors on Rn is an n-dimensional vector space, called the dual of Rn. The
standard covectors d x1, . . . , d xn form a basis for this dual space, and the standard covectors are by definition
dual to the standard basis vectors of Rn. The fact that we can relate these bases via equation 8.1 is sort of a
special feature of the standard inner product on Rn.
Example 8.3. Given any real numbers c1, . . . , cn ∈ Rn, we can define a covector λ by

λ := c1 d x1 + · · ·+ cn d xn : Rn→ R.

So the standard covectors are said to span (Rn)∗. For instance, consider the covector λ= 3 d x − 2 d y + 4 dz.
Then

λ









a
b
c







= 3 d x









a
b
c







− 2 d y









a
b
c







+ 4 dz









a
b
c







= 3a− 2b+ 4c.

Exercise 8.4. Show that the standard covectors on Rn are linearly independent. That is, show that if

0= c1 d x1 + · · ·+ cn d xn

for some real numbers c1, . . . , cn, then we must have c1 = · · ·= cn = 0.
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What Example 8.3 and Exercise 8.4 show is that every covector on Rn can be uniquely written as a linear
combination of the standard covectors. This motivates the following re-definition of covectors.

Definition. A covector on Rn is a linear combination of the standard covectors on Rn. That is, a covector
is a map λ: Rn→ R of the form

λ= c1 d x1 + · · ·+ cn d xn,

for some real numbers c1, . . . , cn ∈ R.

This is all well and good, but what does a covector actually do? The answer is that a covector eats vectors,
and outputs the component of the input vector along some fixed vector.
Example 8.5. Say we have a fixed vector v0 := 〈a0, b0, c0〉 ∈ R3, and we want a map which take some vector
v ∈ R3 as input and tells us how much v pushes along v0. We can define a covector λ= (v0)∗ as

λ= a0 d x + b0 d y + c0 dz.

Then we notice that
λ(v) = a0(v · e1) + b0(v · e2) + c0(v · e3) = v · v0

gives us the component of v along v0. So covectors are dual to vectors (which is how they get the name).
Just as we can define vector fields, we can define covector fields. However, we will usually refer to covector

fields as differential 1-forms. Actually, we’ll often drop the word "differential" and just talk about 1-forms.

Definition. A differential 1-form (or 1-form or covector field) on Rn is a smooth3assignment of a
covector on Rn to each point of Rn. That is, a differential 1-form is a smooth map Rn→ (Rn)∗.

In practice, we won’t think about the above definition too much. Instead, we’ll consider a 1-form to be a
linear combination of the standard 1-forms d x1, . . . , d xn, except that scalar multiplication actually means
multiplication by scalar-valued functions. That is, a differential 1-form on Rn can be written as

λ= F1 d x1 + · · ·+ Fn d xn,

for some real-valued functions F1, . . . , Fn : Rn→ R.

Notation. It might be a little confusing that we used λ to denote a covector and also a covector field.
Similarly, we used d x1, . . . , d xn to denote the standard covectors, and now they denote the standard
1-forms. This is because we can think of covectors as constant covector fields: they give us the same map
at every point of Rn. Going forward, we will think pretty much exclusively about differential 1-forms,
and rarely about a single, stand-alone covector.

Just as we did with covectors, we give a more down-to-earth definition of differential 1-forms which is
suited to the needs of this course. This is somehow less pleasing from an abstract point of view, but will meet
our needs.

Definition. A differential 1-form on Rn is a linear combination over C∞(Rn) of the standard 1-forms
on Rn. That is, a differential 1-form λ is an expression

λ= F1 d x1 + · · ·+ Fn d xn,

where F1, . . . , Fn : Rn→ R are smooth maps. The set of all differential 1-forms on Rn is denoted Ω1(Rn).

Finally, we can define 1-forms on open subsets of Rn by restricting the above notation. A differential
1-form on an open subset R ⊂ Rn is an expression of the form

F1 d x1 + · · ·+ Fn d xn,

where F1, . . . , Fn : R→ R are smooth maps. We denote the collection of all 1-forms on R by Ω1(R).
3Making this precise would require thinking about a differential structure on the dual space (Rn)∗. This isn’t hard, but we won’t do it.

Instead, we’ll think about 1-forms as linear combinations of standard 1-forms, where the "scalars" in our linear combinations are smooth
functions f : Rn→ R.
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Remark. Unlike (Rn)∗, Ω1(Rn) is not a vector space. Instead, Ω1(Rn) is a module over the ring C∞(Rn). These
notions are well beyond the scope of this course, but the basic idea is that, where scalar multiplication in
(Rn)∗ can be undone (provided the scalar is nonzero), the same is not true for Ω1(Rn). For instance, λ= x d x
is a differential 1-form on R, and there does not exist any smooth function F : R→ R with the property that
Fλ= d x .

8.2.2 Integrating 1-forms

There’s enough abstraction going on that it might be difficult to keep track of what we’re doing. But the
mantra so far is that covectors measure (signed) lengths of projections. That is, every covector λ corresponds to
some fixed vector v0, and evaluating λ on some vector v tells us the component of v along v0.

A mantra that many people find helpful for 1-forms is to say that 1-forms are objects which we can integrate
over curves. Indeed, if a covector tells us the component of a vector along some other vector, then we can use
a covector field (i.e., a 1-form) to determine the component of the unit tangent vector T of some curve along
a vector field. That’s a lot of words. Here’s an equation that might clear things up:

∫

C
λ :=

∫

C
λ(T) ds. (8.2)

On the left, we have some 1-form λ which we want to integrate over an oriented curve C. On the right, we
have a scalar line integral over C, and the scalar-valued function we’re integrating is given by λ(T).
Example 8.6. Say we have a pair of smooth functions F1, F2 : R2 → R. Then we can define a differential
1-form λ= F1 d x + F2 d y and consider the integral

∫

C
λ=

∫

C
F1 d x + F2 d y,

for some reasonably nice curve C. Now

λ(T) = (F1 d x + F2 d y)(T) = F1(T · e1) + F2(T · e2) = 〈F1, F2〉 · T.

But this tells us that
∫

C
F1 d x + F2 d y =

∫

C
〈F1, F2〉 · T ds =

∫

C
〈F1, F2〉 · dr,

where F= 〈F1, F2〉. So the physicists’ notation for line integrals makes sense!
At this point, it’s totally reasonable if covectors and differential 1-forms seem like a big waste of time to

you. In Rn, every differential 1-form corresponds to some vector field, and integrating the 1-form over a curve
is the same thing as integrating the vector field over the same curve. So why bother defining 1-forms? In a
much larger context, there are a few reasons:
(a) integrating vector fields requires a choice of inner product — something we don’t always have;
(b) by using the more abstract definitions (without reference to the standard covectors), we can develop a

coordinate-free theory of integration;
(c) differential 1-forms set the stage for differential k-forms, which allow us to define integration over

k-dimensional objects living in any ambient dimension.
We’ll focus exclusively on reason (c). For instance, recall that we only defined surface integrals for surfaces
that live in R3. In order to define integration on a surface living in Rn, n≥ 4, we need the theory of 2-forms.
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Figure 8.1: A parallelogram in R3
x ,y,z spanned by vectors v and w,

and its projections to the x y-, xz-, and yz-planes.

8.2.3 2-forms

Since we integrate 1-forms over curves, it seems natural that we should integrate 2-forms over surfaces. Unlike
1-forms, we won’t give the abstract definition of differential 2-forms — it’s just a bit too abstract. Instead,
we’ll define the standard 2-forms on Rn and, as we did with 1-forms, consider an arbitrary 2-form to be a
linear combination of these.

We’ll start our story in R3 for concreteness. Recall that the 1-forms d x , d y, and dz tell us the components
of a vector v in the x-, y-, and z-directions, respectively. We want to similarly define standard 2-forms

d x ∧ d y, d x ∧ dz, and d y ∧ dz

on R3. A 2-form will accept as input a pair v, w of vectors and output a real number. In each case, this real
number will correspond to the signed area of a projection of the parallelogram in R3 spanned by v and w.
Before giving a formulaic definition, we present an example.

Example 8.7. Consider the vectors v= 〈7,0, 5〉 and w= 〈3, 10,5〉 in R3. These vectors span a parallelogram
in R3, and in Figure 8.1 we depict three different projections of this parallelogram: first onto the x y-plane,
then onto the xz-plane, and finally onto the yz-plane. The signed areas of these three parallelograms should
be given by

d x ∧ d y(v,w), d x ∧ dz(v,w), and d y ∧ dz(v,w),

respectively. Let’s focus on d x ∧ d y(v,w), which gives the signed area of the projection of our parallelogram
to the x y-plane. This parallelogram is spanned by the projections of v and w to the x y-plane, which are given
by

projx y(v) = 〈7,0, 0〉 and projx y(w) = 〈3,10, 0〉.

When we say that we want the signed area, we mean that d x ∧ d y(v,w) should be positive if the vectors
projx y(v) and projx y(w) are oriented in the same manner as ∂x = i and ∂y = j. So we’re computing the signed
area of a parallelogram in R2. Indeed, since the z-coordinates of projx y(v) and projx y(w) are both zero, we
can compute this area using a 2× 2 determinant4

d x ∧ d y(v,w) := det
�

projx y(v) projx y(w)
�

= det
�

7 3
0 10

�

= 70.

So if P is the parallelogram in R3 spanned by v and w, then the signed area of the projection of P to the x y-
plane is 70. Notice that swapping v and w multiplies this value by −1, since we have changed the orientation
of P:

d x ∧ d y(w,v) := det
�

projx y(w) projx y(v)
�

= det
�

3 7
10 0

�

= −70.

4Of course we’re abusing notation a bit here, since both projx y (v) and projx y (w) are vectors in R3 rather than R2. But we suppress the
z-component, since this is forced to be 0.
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We can obtain a similar sign flip by swapping the roles of d x and d y, but let’s not explain this just yet. Instead,
we point out that d x ∧ dz and d y ∧ dz are computed analogously: we project v and w to the relevant plane
and then compute a relevant determinant. We have

d x ∧ dz(v,w) := det
�

projxz(v) projxz(w)
�

= det
�

7 3
5 5

�

= 20

and
d y ∧ dz(v,w) := det

�

projyz(v) projyz(w)
�

= det
�

0 10
5 5

�

= −50.

Okay, so the rule for computing the standard 2-forms in R3 can roughly be summarized as: delete the
component we’re ignoring, and compute the 2× 2 determinant of what’s left over. In order to generalize to
higher dimensions, we’ll need something a bit more formulaic.

Definition. Let d x1, · · · , d xn denote the standard differential 1-forms on Rn. For every 1 ≤ i, j ≤ n,
define a 2-form d x i ∧ d x j : Rn ×Rn→ R by the formula

(d x i ∧ d x j)(v,w) := det













v1 w1
...

...
vn wn







(i, j)






,

for any vectors v= 〈v1, . . . , vn〉,w= 〈w1, . . . , wn〉 ∈ Rn. Here if M is an n×2 matrix, then M(i, j) is the 2×2
matrix whose first row is the ith row of M and whose second row is the jth row of M . The standard
2-forms on Rn are the 2-forms d x i ∧ d x j , with i < j.

Example 8.8. Consider the vectors

v= 〈v1, v2, v3, v4〉 and w= 〈w1, w2, w3, w4〉

in R4. Let’s compute d x3 ∧ d x1(v,w). Per the definition, this value is given by

d x3 ∧ d x1(v,w) = det















v1 w1

v2 w2

v3 w3

v4 w4







(3,1)









.

Taking the third and first rows of this matrix as prescribed, we find that

d x3 ∧ d x1(v,w) = det
�

v3 w3

v1 w1

�

= v3w1 −w3v1.

Notice that we can also write this as

d x3 ∧ d x1(v,w) = d x3(v)d x1(w)− d x3(w)d x1(v).

This last expression is often used to define the standard 2-forms d x i ∧ d x j , but we’ll find the determinant
formulation somewhat more amenable to higher-order forms.
Exercise 8.9. Show that for any 1 ≤ i, j ≤ n, we have d x j ∧ d x i = −d x i ∧ d x j . Use this to conclude that
d x i ∧ d x i = 0, for any 1≤ i ≤ n.

With the standard 2-forms in hand, we can state our definition of 2-forms on open subsets of Rn.

Definition. A differential 2-form on an open subset R of Rn is a linear combination over C∞(R) of
the standard 2-forms on Rn. That is, a differential 2-form ω is an expression

ω=
n−1
∑

i=1

n
∑

j=i+1

Fi, j d x i ∧ d x j ,

where each Fi, j : R→ R is a smooth map. The collection of all 2-forms on R is denoted by Ω2(R).
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Remark.
1. Notice that the summation in the definition of 2-forms is chosen to force i < j. This is because the

standard 2-forms have i < j.
2. There are

�n
2

�

= 1
2 n(n−1) standard 2-forms on Rn, and thus an arbitrary 2-form on R is determined by a

choice of 1
2 n(n− 1) smooth functions on R. Unless n= 3, this means that a 2-form does not correspond

to a vector field on R, unlike a 1-form.

8.2.4 Exercises

Exercise 8.10. For any vectors v,w ∈ R3, verify the following formula for the cross product:

v×w= 〈d y ∧ dz(v,w), dz ∧ d x(v,w), d x ∧ d y(v,w)〉 .

Notice that the middle form dz ∧ d x is not standard, according to our definition.
Exercise 8.11. Show that if φ : Rn→ R is any smooth function on Rn and v ∈ Rn is an arbitrary vector, then

∇φ · v=
∂ φ

∂ x1
d x1(v) + · · ·+

∂ φ

∂ xn
d xn(v).

The 1-form
dφ :=

∂ φ

∂ x1
d x1 + · · ·+

∂ φ

∂ xn
d xn

is often called the total differential of φ.
Exercise 8.12. We have established a correspondence between 1-forms on Rn and vector fields on Rn. Say we
have a 1-form λ= F1 d x + F2 d y + F3 dz on R3, corresponding to the vector field F= 〈F1, F2, F3〉. Now consider
the 2-form dλ defined by

dλ := dF1 ∧ d x + dF2 ∧ d y + dF3 ∧ dz.

Here the symbol dλ is (for now) meaningless, except as we’ve just defined it. Each of dF1, dF2, and dF3 is a
total differential, as defined in Exercise 8.11, and we compute, for instance, dF1 ∧ d x , by "distributing the ∧"
as expected5. Show that

dλ= curlx (F) d y ∧ dz + curly(F) dz ∧ d x + curlz(F) d x ∧ d y,

where curlx (F) denotes the x-component of the vector field curl(F), and similarly for curly(F) and curlz(F).
Exercise 8.13. (Challenge) Consider a smooth function f : Rn → R, and let S ⊂ Rn be the hypersurface
defined by

S := {(x1, . . . , xn) : f (x1, . . . , xn) = c},

for some c ∈ R. Assume that for every point p ∈ S, the derivatives fx1
(p), . . . , fxn

(p) do not all vanish. (This
ensures that S is a smooth surface.) Prove that if v ∈ Rn is tangent to S at a point p ∈ S, then d f (v) = 0. Here
d f is the total differential of f .
Hint: Use the result from Exercise 8.11.

5We’ll define the wedge product in our next class meeting. You should go ahead and attempt this problem in order to get comfortable
with the notation.
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8.3 Day 22: Differential k-forms and algebraic operations

Goals

By the end of today’s class, we should be able to do the following.
1. Define differential k-forms.
2. Compute the wedge product of a pair of differential forms on Rn.

8.3.1 Differential k-forms

In our last meeting we defined 1-forms and 2-forms, which measure signed lengths and areas6, respectively.
Namely, a 1-form λ on Rn corresponds to some vector field F on Rn, and the value λ(v) measures the compo-
nent of a vector v along F. Similarly, a 2-form ω ought to7 correspond to some plane field8 P, and ω(v,w)
should9 measure the signed area of the parallelogram spanned by v and w, when projected to P.

By analogy, a k-form on Rn should10 measure k-dimensional signed volumes. Namely, if η is a k-form on
Rn, then at every point p ∈ Rn we should have a map

ηp :

k times
︷ ︸︸ ︷

Rn × · · · ×Rn→ R,

and we imagine11 that this map corresponds to an oriented k-dimensional subspace V ⊂ Rn which passes
through p. Then the quantity

ηp(v1, . . . ,vk)

ought12 to measure the signed volume of the parallelotope spanned by v1, . . . ,vk when projected to V . For
instance, the differential 3-form d x (1,2,3) on Rn, n≥ 3 should be computed as follows:

d x (1,2,3)













u1
...

un






,







v1
...
vn






,







w1
...

wn












= det





u1 v1 w1

u2 v2 w2

u3 v3 w3



 .

That is, we project the vectors u, v, and w to the x1 x2 x3 3-plane, and compute signed volume within that
space. Notice that, according to our intuition, a k-form on Rn is only a reasonable thing to consider if k ≤ n. If
k > n, then there is just one k-form on Rn: the zero form.

Our definition of differential k-forms will mimic the presentation we gave last time for 2-forms, using
determinants. In order to state this definition, we’ll need to establish some notation.

Definition. Let M be an n×m matrix, and let I = (i1, . . . , ik) be amulti-index of length k, with 1≤ i j ≤ n
for each 1≤ j ≤ k. That is, I is a sequence of k integers, each between 1 and n, with repetition allowed.
The k×m matrix MI is defined so that the jth row of MI is given by the i j

th row of M .

Example 8.14. Let

M =







2 9 4
7 5 3
6 1 8
a b c






.

6This is a lie. The standard 2-forms measure signed areas, but in dimensions greater than three, a linear combination of standard
2-forms need not measure signed areas. Nonetheless, we will use this as a crutch for our intuition.

7But needn’t.
8That is, a choice of two-dimensional plane at every point in Rn.
9Nope.

10Again, lies.
11In general, we imagine incorrectly.
12This one’s in italics, so we’ll let it sli–nope! Not all k-forms correspond to k-spaces.
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Then

M(3,2,1) =





6 1 8
7 5 3
2 9 4



 , M(1,4) =
�

2 9 4
a b c

�

, and M(2,2,2,2,2) =











7 5 3
7 5 3
7 5 3
7 5 3
7 5 3











.

Definition. With this notation established, we can now define a k-form d x I := d x i1 ∧ · · · ∧ d x ik on Rn

for each multi-index I = (i1, . . . , ik) of integers between 1 and n, provided 1≤ k ≤ n. This form is a map

d x I :

k times
︷ ︸︸ ︷

Rn × · · · ×Rn→ R

defined by d x I (v1, . . . ,vk) := det (MI ), where

M =





| |
v1 · · · vk

| |





is the n× k matrix whose columns are given by the vectors v1, . . . ,vk in Rn.

Remark. Depending on how much matrix algebra you’ve seen, you may not be comfortable computing
determinants of n× n matrices when n is greater than 3. From a conceptual standpoint, the most important
thing we can say at this stage is the following:

In any dimension, determinants compute signed volumes.

If M is an n× n matrix, then det M computes the signed volume of the n-dimensional parallelotope spanned
by the columns of M . In the above formulation, where I is a multi-index of length k, the matrix MI is of size
k× k, and thus d x I computes k-dimensional volumes. A possibly-more-comforting second remark is that in
this class you probably won’t have to actually compute any determinants of size bigger than 3×3. Just in case
this changes, a 4× 4 determinant is computed below. But it’s more important that you know some properties
of the determinant.

In the course of your mathematical career, you’ll need to learn many properties of the determinant. Some
of the most relevant properties for us are the following. Throughout, M is a k× k matrix.

1. For any constant c, det(cM) = ck det(M).
2. Suppose 1≤ j ≤ k, and the jth column c j of M can be written as c j = v+w, for some k× 1 vectors v,w.

Let Mv and Mw denote the matrices obtained by replacing c j with v and with w, respectively. Then

det(M) = det(Mv) + det(Mw).

Similarly, if the jth row r j has the form r j = v+w, then

det(M) = det(M v) + det(Mw),

where M v and Mw denote the matrices obtained by replacing the row r j with v and with w, respectively.
3. For some integers 1≤ i 6= j ≤ k, let M̃ be the matrix obtained by swapping the ith and jth columns of M .

Then det(M̃) = −det(M). Similarly, swapping two rows of M will multiply the determinant by −1.
4. If a given row or column of M is scaled by some scalar c ∈ R, then det(M) is scaled by c. (Property 1

can be obtained from this property.)
5. Suppose A is an k× k matrix and D is an `× ` matrix. Then

det
�

A 0
0 D

�

= det(A) · det(D).

The matrix whose determinant we compute here is of size (k + `)× (k + `), and is said to be a block
matrix.
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These properties may seem overwhelming at first, but you should verify that each of them fits with our
geometric understanding of the determinant.
Exercise 8.15. Show that if a multi-index I has any repeated indices, then the corresponding differential
form d x I is 0.

Definition. If I = (i1, . . . , ik) is an increasing multi-index of integers between 1 and n, meaning that

i1 < i2 < · · ·< ik,

then we call d x I a standard k-form.

Remark. Choosing a standard k-form on Rn amounts to choosing k distinct integers from the set {1, . . . , n}.
Once the k integers are chosen, we obtain a standard k-form by constructing an increasing multi-index I and
then considering d x I . Thus we see that there are

�n
k

�

= n!
k!(n−k)! standard k-forms on Rn.

Exercise 8.16. Given a not-necessarily-increasing, length k multi-index I of distinct integers between 1 and
n and k+ 1 vectors v1, . . . ,vk+1 ∈ Rn, use determinant properties to rewrite the quantity

d x I (v1, . . . ,vk−1,vk) + d x I (v1, . . . ,vk−1,vk+1)

as a single evaluation of a standard k-form. Notice that vk+1 is omitted from the first term and vk is omitted
from the second.

Definition. Given 1≤ k ≤ n, a differential k-form (or k-form) η on an open subset R of Rn is a linear
combination of the standard k-forms on R. That is, η can be written

η=
∑

I

FI d x I ,

where the sum is taken over all increasing multi-indices of integers between 1 and n with length k, and
each function FI : R→ R is smooth. For completeness, we define a 0-form on R to be a smooth function
f : Rn→ R, and declare that all k-forms are zero if k > n. The collection of all k-forms on Rn is denoted
Ωk(Rn), and we say that a k-form has degree k, denoted deg(η) = k.

Example 8.17. Consider the differential 4-form η= x4 d x (1,2,3,5) on R5, and consider the vector fields

v1 = e1 + e2, v2 = e2 + e3, v3 = e3 + e4, v4 = e4 + e5.

Let’s compute η(v1,v2,v3,v4). We have

η(v1,v2,v3,v4) = x4 d x (1,2,3,5)





















1
1
0
0
0











,











0
1
1
0
0











,











0
0
1
1
0











,











0
0
0
1
1





















= x4 det























1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1











(1,2,3,5)













= x4 det







1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1






.
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We can compute this last determinant by the method of cofactor expansion13:

det







1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1






= (1)det





1 0 0
1 1 0
0 0 1



− (0)det





1 0 0
0 1 0
0 0 1





+ (0)det





1 1 0
0 1 0
0 0 1



− (0)det





1 1 0
0 1 1
0 0 0





= (1)
�

(1)det
�

1 0
0 1

�

− (0)det
�

1 0
0 1

�

+ (0)det
�

1 1
0 0

��

= (1)((1)(1)− (0)(1) + (0)(0)) = 1.

Altogether, we find that
η(v1,v2,v3,v4) = x4.

We define addition and scalar multiplication of k-forms in the obvious way. That is, k-forms are added
according to the formula

�

∑

I

fI d x I

�

+

�

∑

I

gI d x I

�

:=
∑

I

( fI + gI ) d x I ,

and multiplication by a scalar function is defined by

g

�

∑

I

fI d x I

�

:=
∑

I

(g fI ) d x I .

It is important to note that addition is only defined for forms of the same degree.

8.3.2 Wedge products

Now it’s time to explain the funny symbol ∧. We’ve said that a 1-form λ on Rn corresponds to some vector
field F on Rn, and for any vector v, λ(v) tells us the signed component of v along F. Now suppose we have
another 1-form η, corresponding to a vector field G. If F and G are linearly independent, then F and G span a
plane field P, and there is a 2-form which measures signed areas in P, using the oriented basis (F,G). This
2-form will be given by λ∧η.

For any 1≤ k,`≤ n, the wedge product will give a map

∧: Ωk (Rn)×Ω` (Rn)→ Ωk+`(Rn).

That is, the wedge product of a k-form and an `-form is a (k + `)-form. (If k + ` > n, this product is
automatically zero.) Geometrically, this means that if14 λ measures k-volumes and η measures `-volumes,
then λ∧ηmeasures (k+`)-volumes (provided the k-volumes measures by λ are independent of the `-volumes
measured by η). Making sense of this algebraically can be a bit of a mess, so we will define the wedge
product on the differential forms d x I , where I is a multi-index, and then extend to more general forms via
the distributive property.

Definition. Let I and J be nonempty multi-indices of integers between 1 and n. The wedge product of
the associated differential forms d x I and d x J on Rn is given by concatenation:

d x I ∧ d x J := d x I∗J ,

where
I ∗ J := (i1, . . . , ik, j1, . . . , j`)

is the concatenation of the multi-indices I = (i1, . . . , ik) and J = ( j1, . . . , j`).

13Since we have actual numbers here — rather than variables — an even better method is asking a computer.
14As we’ve (foot)noted previously, our intuition is guided by the idea that all k-forms measure k-volumes, but this isn’t actually true.
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Exercise 8.18. Check that the wedge product is associative. That is, show that
d x I ∧ (d x J ∧ d xK) = (d x I ∧ d x J )∧ d xK ,

for any nonempty multi-indices I , J , and K.
Exercise 8.19. Show that if I = (i1, . . . , ik), then

d x I = d x i1 ∧ · · · ∧ d x ik .

Going forward, we will more often use the notation on the right than that on the left.
Exercise 8.20. Verify the following skew-commutativity property for the wedge product: for any multi-indices
I and J ,

d x J ∧ d x I = (−1)|I ||J | d x I ∧ d x J ,

where |I | and |J | denote the lengths of the multi-indices I and J , respectively.
Even if this definition doesn’t feel too inspired, let’s observe that it at least passes some sort of dimension

test: in the above, d x I measures k-volumes, d x J measures `-volumes, and d x I ∧d x J measures (k+`)-volumes.

We can now extend the wedge product to arbitrary differential forms by assuming that this product behaves
as we would expect (with the exception of skew-commutativity).

Definition. Let R be an open subset of Rn, and let Ω•(R) denote the set of all15differential forms on Rn

(of any degree). The wedge product

∧: Ω•(R)×Ω•(R)→ Ω•(R)

is defined by the following conditions:
(1) for 0-forms, the wedge product is scalar multiplication: f ∧ω = f ω, for any 0-form f and any

ω ∈ Ω•(R);
(2) d x I ∧ d x J follows the previous definition, for any multi-indices I , J of integers between 1 and n;
(3) for any forms λ,η ∈ Ω•(R) and any smooth function f on R, ( f λ)∧η= f (λ∧η);
(4) for any forms λ,η,ω ∈ Ω•(R), the wedge product distributes according to

(λ+η)∧ω= λ∧ω+η∧ω and ω∧ (λ+η) =ω∧λ+ω∧η,

assuming that λ and η have the same degree.

Example 8.21. Let’s show that the wedge product of any 1-form with itself is 0. We start by writing our
1-form as

λ= F1 d x1 + · · ·+ Fn d xn,

for some smooth functions F1, . . . , Fn on an open subsetR of Rn. Using the distributive law for wedge products,
we find that

λ∧λ=
n
∑

i=1

n
∑

j=1

Fi F j d x i ∧ d x j .

From here it’s not hard to reason that λ∧ λ vanishes. Indeed, d x i ∧ d x i = 0, and whenever i 6= j we have
d x j ∧ d x i = −d x i ∧ d x j . So the addition of the term F j Fi d x j ∧ d x i corresponds to subtracting the term
Fi F j d x i ∧ d x j , canceling out all terms of our sum. Somewhat more carefully, can rewrite our sum as

λ∧λ=
n−1
∑

i=1

n
∑

j=i+1

(Fi F j d x i ∧ d x j + F j Fi d x j ∧ d x i) =
n−1
∑

i=1

n
∑

j=i+1

(Fi F j d x i ∧ d x j − F j Fi d x i ∧ d x j) = 0.

Example 8.22. Show that if λ and η are 1-forms on an open subset R of Rn, then
(λ∧η)(v,w) = λ(v)η(w)−λ(w)η(v),

for any vector fields v,w on R. Explain how the result of Example 8.21 can be obtained from this fact.
Hint: First prove this under the assumption that λ and η are standard 1-forms, then extend via linearity.

15This notation is potentially dangerous: in case you’re tempted to think otherwise, we point out that an element of Ω•(R) is a k-form
on R, for some k ≥ 0, not a sum of forms of various degree.

111



Math 32BH Lecture Notes Week 8

Exercise 8.23. Generalizing Exercise 8.20, show that for any forms α and β ,

β ∧α= (−1)deg(α)deg(β)α∧ β .

Explain how the result of Example 8.21 can be derived from this formula.
Example 8.24. Forms of degree greater than 1 need not square to zero, however. Consider coordinates
(x1, x2, y1, y2) on R4. We can define a 2-form

ω := d x1 ∧ d y1 + d x2 ∧ d y2.

Then

ω∧ω= (d x1 ∧ d y1 + d x2 ∧ d y2)∧ (d x1 ∧ d y1 + d x2 ∧ d y2)

= (d x1 ∧ d y1)∧ (d x1 ∧ d y1) + (d x2 ∧ d y2)∧ (d x1 ∧ d y1)

+ (d x1 ∧ d y1)∧ (d x2 ∧ d y2) + (d x2 ∧ d y2)∧ (d x2 ∧ d y2)

= 0+ 2(d x1 ∧ d y1)∧ (d x2 ∧ d y2) + 0

= −2(d x1 ∧ d x2 ∧ d y1 ∧ d y2).

The penultimate inequality makes use of Exercises 8.15 and 8.20.
Examples 8.21 and 8.24 are related to our footnotes about the lie of pretending that every k-form measures

signed k-volume. For k = 1, it really is true that every 1-form measures signed length. Thus it makes sense
that if λ is a 1-form, then λ∧λ should be zero: if λ is associated to F, then λ∧λ is a 2-form associated to the
parallelogram spanned by F and F. But this "parallelogram" is one-dimensional, so it has no area. On the
other hand, the 2-form we give in Example 8.24 does not correspond to any parallelogram. If it did, then the
same geometric reasoning would lead us to conclude that ω∧ω= 0.
Example 8.25. In Rn, we can use wedge products to compute the volume of an n-dimensional parallelotope
without reference to the inner product on Rn (but in a way that agrees with the volume given by the inner
product). Namely, we can define the volume form ν := d x1 ∧ · · · ∧ d xn on Rn, and we find that

|ν(v1, . . . ,vn)|= vol(V ), (8.3)

where vol(V ) gives the volume (as determined by the inner product structure) of the parallelotope V spanned
by v1, . . . ,vn. In a setting more general than ours, we might have access to differential forms, but not to an
inner product. In that setting, we can take (8.3) as the definition of n-dimensional volume: we choose a
top-degree differential form on our space and declare it to be the volume form.
Exercise 8.26. We can verify equation (8.3) as follows. In any inner product space W (you may think of W
as Rn), we can define the Gramian or Gram determinant of a collection of vectors v1, . . . ,vk ∈W :

G(v1, . . . ,vk) := det









v1 · v1 v1 · v2 · · · v1 · vk

v2 · v1 v2 · v2 · · · v2 · vk
...

... . . . ...
vk · v1 vk · v2 · · · vk · vk









.

Now the vectors v1, . . . ,vk span a polytope V of dimension at most k, and the k-dimensional volume of this
polytope is given (in the inner product space formulation) by

volk(V ) =
Æ

G(v1, . . . ,vk).

Taking this as the definition of volume, and with the volume form16 on Rn defined as above, prove that

|ν(v1, . . . ,vn)|= voln(V ),

for any vectors v1, . . . ,vn ∈ Rn.
16Let’s be clear about what we’re glossing over here. The form ν is our preferred volume form precisely because it gives us the same

volume as does the inner product. Without the knowledge of the inner product structure on Rn, we wouldn’t necessarily have a reason to
prefer this volume form over some other top-degree form.
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Exercise 8.27. Given a choice of volume form ν on Rn, we can compute n-volumes without reference to
the inner product. But what about k-volumes, where 1≤ k < n? Say we have linearly independent vectors
v1, . . . ,vk in Rn, and let V be the k-dimensional parallelotope spanned by these vectors. We can’t feed v1, . . . ,vk

into ν, so how do we determine the k-dimensional volume of V? Our basic intuition is as follows: we can find
the area of a rectangle in R3 by turning the rectangle into a rectangular prism, where the "height" above the
rectangle is 1. The area of the rectangle is then the same as the volume of the resulting rectangular prism. In
our more general setting, we can choose an orthonormal basis for the orthogonal complement V⊥ of V . That is,
we choose vectors n1, . . . ,nn−k such that

ni · v j = 0 and ni · n j =
§

0, i 6= j
1, i = j .

Notice that our ability to choose these vectors relies on the inner product structure of Rn. Prove that

|ν(v1, . . . ,vk,n1, . . . ,nn−k)|= volk(V ),

where volk(V ) is the k-dimensional volume of V , as defined by the Gramian.
Hint: Use Exercise 8.26 to rewrite the desired equality in terms of Gramians. You should end up needing to
compute the determinant of a block matrix.

113



Math 32BH Lecture Notes Week 9

9 Week 9
This week we carry on in our quest to generalize part two of the course. We start by defining differentiation
for differential forms — an important ingredient in any FTIC — as well as a notion of change-of-variables for
forms. We then identify the subsets of Rn over which we will integrate k-forms, and finally define the integral
of a k-form over a parametrized k-surface.

9.1 Day 23: Differentiation

Goals

By the end of today’s class, we should be able to do the following.
1. Define and interpret the exterior derivative of a differential form.

9.1.1 Differentiation

We want to define a notion of differentiation for differential forms which at least moderately agrees with the
philosophy that derivatives should measure how quickly a quantity is changing. The only possibly-artificial
requirement we impose on our differentiation is that we want the derivative of a differential form to be
another differential form.

0-forms

Let’s start with the easiest case: 0-forms. A 0-form is just a smooth function f : Rn → R, and we’re quite
familiar with derivatives for smooth functions. Our preferred derivative here will be the directional derivative.
That is, the derivative of a 0-form f is the 1-form d f : Rn→ R defined by

d f (v) := Dv f =∇ f · v.

We’ve seen this 1-form before: according to Exercise 8.11, d f is the total differential of f .

Definition. Let f ∈ Ω0(R) be a 0-form on some open subset R of Rn. The derivative (or exterior
derivative) d f of f is the total differential of f .

Exercise 9.1. Prove the product rule for total differentials: d( f g) = g d f + f d g, for any smooth functions
f , g : Rn→ R.

1-forms

That wasn’t so bad. We started with a 0-form f and asked, given a vector v, how quickly f changes as we
move in the direction (and at the speed) determined by v. Maybe we can do something similar for a 1-form
λ ∈ Ω1(R). Let’s ask the vague question, "How does λ vary as we move in the direction of v?"

The first problem we run into is nailing down what we mean by, "How does λ vary?" In order to get a real
number out of λ, we need to plug in a vector — this is in addition to the vector v along which we’re taking a
derivative. So we realize that the derivative of a 1-form will eat two vectors and output a real number. Since we
expect derivatives of differential forms to be differential forms, we conclude that the derivative of a 1-form
will be a 2-form.
Remark. One point about which we could have been more careful is that a differential k-form on R doesn’t
just eat k vectors — it eats a point p in R, and then k vectors based at p. A typical notation for this is

ηp(v1, . . . ,vk),

to indicate that the vectors v1, . . . ,vk are all based at p. So if w is a vector field on R, then we can think of the
quantity λ(w) as a smooth function R→ R: for each point p ∈R, we compute λp(w(p)). This perspective
should be helpful as we define the derivative.
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A reasonable first attempt at defining dλ(v,w) would treat w as a (constant) vector field and simply
compute the directional derivative Dv(λ(w)). Since λ(w) is a smooth function, we can take its directional
derivative in the direction of v, so this makes sense. The problem is that Dv(λ(w)) treats the vectors v and w
very unequally. We want dλ to be a 2-form, but there’s no reason to expect the expression Dv(λ(w)) to be
alternating in the vectors v and w. We fix this by taking the alternatization of the expression.

Definition. Let λ ∈ Ω1(R) be a differential 1-form on some open subset R of Rn. The derivative (or
exterior derivative) dλ of λ is a 2-form on R defined by

dλ(v,w) := Dv(λ(w))− Dw(λ(v)),

for vectors v,w, treated as constant vector fields on R.

Remark. In a more abstract setting, it’s not as easy to just pretend that vectors are in fact vector fields; i.e.,
there’s not generally such a thing as a constant vector field. Writing down this definition of the derivative in
such a setting is a little more work.
Exercise 9.2. Show that exterior differentiation is a linear map d : Ω1(R)→ Ω2(R). That is, show that if
c ∈ R is a scalar and λ,η are 1-forms on R, then

d(cλ) = c dλ and d(λ+η) = dλ+ dη.

Note: It’s important that c is a constant scalar, and not a scalar function.
Example 9.3. Let’s compute the derivative of a standard 1-form on Rn. Take 1≤ j ≤ n and v,w ∈ Rn. Then

d(d x j)(v,w) = Dv(d x j(w))− Dw(d x j(v)).

But moving our point in the direction of v doesn’t affect the value of the function d x j(w), so Dv(d x j(w)) = 0.
We similarly find that Dw(d x j(v)) = 0, so d(d x j) = 0 .

Example 9.4. Together, Exercise 9.2 and Example 9.3 might worry us. We’ve shown that the derivative of
a standard 1-form is 0, and that differentiation is linear. Since an arbitrary 1-form is a linear combination
(over C∞(R)) of standard 1-forms, we might be tempted to think that the derivative of a 1-form is always 0.
Instead, we have a product rule. Suppose we have a 0-form f and a standard 1-form d x j on R ⊂ Rn. Then for
any vectors v,w ∈ Rn,

d( f d x j)(v,w) = Dv( f d x j(w))− Dw( f d x j(v)).

But again, d x j(w) doesn’t depend on v, so our product rule for directional derivatives tells us that

d( f d x j)(v,w) = Dv( f ) d x j(w)− Dw( f ) d x j(v)

= d f (v) d x j(w)− d f (w) d x j(v)

= (d f ∧ d x j)(v,w).

So we find that d( f d x j) = d f ∧ d x j . The last equality depends on Exercise 8.22.

k-forms

Now that we’ve differentiated 1-forms, doing the same for k-forms shouldn’t be too bad. First, if η is a k-form,
then dη is a (k+ 1)-form. As a naïve idea, this is because we feed k vectors (plus a point) into η in order to
get a real number, then choose one more vector and ask how the real number changes as we move in this
auxiliary direction. That is, the naïve (and incorrect) attempt at defining dη would have us compute the
directional derivative

Dvk+1
(η(v1, . . . ,vk)),

where again we treat each vector vi as a constant vector field. As before, this does not give equal treatment to
each of the k+ 1 vectors. We put all of the vectors on equal footing by, one at a time, treating each as the
vector which is varied while the others are plugged into η. We then sum the resulting derivatives, except that
the requirement that dη be a differential form (and thus skew-commutative) introduces a sign that we must
track.
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Definition. Let η ∈ Ωk(R) be a differential k-form on some open subset R of Rn. The derivative (or
exterior derivative) dη of η is a (k+ 1)-form on R defined by

dη(v1, . . . ,vk+1) =
k+1
∑

j=1

(−1) j+1Dv j
(η(v1, . . . ,bv j , . . . ,vk+1)),

for vectors v1, . . . ,vk+1. Here the notation bv j indicates that we omit the vector v j , and all vectors are
treated as constant vector fields.

Exercise 9.5. Verify that this definition of the derivative recovers the previous definitions for 0- and 1-forms.
Remark. In Exercise 9.2 we saw that the linearity of differentiation for 1-forms follows from the linearity of
directional derivatives. The same reasoning tells us that differentiation of k-forms is linear, for any k.
Example 9.6. As was the case for 1-forms, the standard k-forms have derivative 0. Indeed, for any vectors
v1, . . . ,vk+1 and appropriate multi-index I ,

d(d x I )(v1, . . . ,vk+1) =
k+1
∑

j=1

(−1) j+1Dv j
(d x I (v1, . . . ,bv j , . . . ,vk+1)).

But, just as we saw in the case k = 1, the quantity d x I (v1, . . . ,bv j , . . . ,vk+1) doesn’t change as we vary our point
in the direction of v j . So each of the directional derivatives in our sum vanishes, and we see that d(d x I ) = 0 .

Exercise 9.7. Repeat the argument of Example 9.4 to show that d( f d x I ) = d f ∧ d x I for any 0-form
f ∈ Ω0(R) and any standard k-form d x I on R.
Example 9.8. Let’s prove a version of the product rule for differentiation of wedge products. This is often
called a Leibniz rule. Say we have an open subset R of Rn, along with a k-form α and an `-form β on R.
Then we may write

∑

I

fI d x I and
∑

J

gJ d x J ,

where the sums are taken over multi-indices of length k and `, respectively. Using the algebraic properties of
the wedge product, the linearity of differentiation, and the result of Exercise 9.7, we find that

d(α∧ β) = d

��

∑

I

fI d x I

�

∧

�

∑

J

gJ d x J

��

= d

�

∑

I ,J

fI gJ d x I ∧ d x J

�

=
∑

I ,J

d
�

fI gJ d x I ∧ d x J
�

=
∑

I ,J

d( fI gJ ) d x I ∧ d x J .

At this point we can apply the product rule derived in Exercise 9.1, as well as algebraic properties of wedge
products, to find that

d(α∧ β) =
∑

I ,J

gJ d fI ∧ d x I ∧ d x J +
∑

I ,J

fI d gJ ∧ d x I ∧ d x J

=
∑

I ,J

(d fI ∧ d x I )∧ (gJ d x J ) + (−1)deg(d gJ )deg(d x I )
∑

I ,J

( fI d x I )∧ (d gJ ∧ d x J )

= dα∧ β + (−1)kα∧ dβ .

So we have the general rule that

d(α∧ β) = dα∧ β + (−1)deg(α)α∧ dβ .

It’s probably not obvious that the signs in this last computation are correct. You should check that they work
out.
Exercise 9.9. Check the computations in Example 9.8 for sign errors.

The derivative allows us to introduce some terminology for k-forms. The main characters in part two of
the course were vector fields, and we cared a lot about determining whether or not we could find a potential
(function or vector field) for a given vector field. With differential forms, we can streamline this question a bit.
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Definition. Let η be a k-form on an open subset R of Rn. If k ≥ 1, then we say that η is exact if there
is a (k− 1)-form λ satisfying dλ= η, in which case we call λ a potential for η. We say that η is closed
if dη= 0.

Exercise 9.10. Identify all closed 0-forms.
In this new language, we would say that a conservative vector field is exact, since it is the derivative of

some scalar potential function. Notions like curl-free are similarly encoded as statements about forms being
closed. Recall that — by our definition of curl — conservative vector fields are curl-free. In the language of
forms, this is reflected by the fact that exact forms are closed, which follows from the following exercise.

Exercise 9.11. Prove that d ◦ d = 0 (often called the nilpotence of d). That is, show that if α is a k-form,
k ≥ 0, then d(dα) = 0.
Hint: First prove this under the assumption that α= f d x I , and then extend by linearity.

Axioms for d. The derivative we’ve defined here can also be defined as the unique linear (over R) map
d : Ωk(R)→ Ωk+1(R) such that
(1) d f is the total differential, for any 0-form f ;
(2) d(d f ) = 0, for any 0-form f ;
(3) d(α∧ β) = dα∧ β + (−1)deg(α)(α∧ dβ), for any forms α and β .

Hopefully you’re not too mad at me for holding off on these axioms until we’d seen the somewhat more
elaborate definition. The axioms are useful for obtaining the relevant algebraic properties, but are maybe a
bit harder to motivate geometrically.

Remember that we initially defined the vector derivatives curl and div algebraically, and delayed their
geometric interpretations until we had established a relevant FTIC. A similar saga will play out here; after
proving Stokes’ theorem, we’ll revisit the definition of d and give the "correct" geometric interpretation.

9.2 Day 24: Pullbacks

Goals

By the end of today’s class, we should be able to do the following.
1. Compute the pullback of a differential form under a smooth map.

9.2.1 Pullback

Given a smooth map Φ: D→R between open subsets D ⊂ Rm and R ⊂ Rn, we want to know how Φ relates
the linear structures of Rm and Rn which we see on D and R. For instance, for any point p ∈D and vector
v ∈ Rm based at p, we have a vector Φ∗v in Rn based at Φ(p) ∈R. Here Φ∗ is the Jacobian matrix of Φ, and
Φ∗v is a matrix product, which we call the pushforward of v. This tells us how to push a vector forward from
D to R. Similarly, we can define the pullback of a differential form.

Definition. Let Φ: D→R be a smooth map between open subsets D ⊂ Rm and R ⊂ Rn. The pullback
of a 0-form f ∈ Ω0(R) is the 0-form Φ∗ f ∈ Ω0(D) defined by

Φ∗ f := f ◦Φ.

For k ≥ 1, the pullback of a k-form λ ∈ Ωk(R) is the k-form Φ∗λ ∈ Ωk(D) defined by

(Φ∗λ)p(v1, . . . ,vk) := λΦ(p)(Φ∗v1, . . . ,Φ∗vk),

for any vectors v1, . . . ,vk ∈ Rm based at p ∈D, where Φ∗ is the Jacobian matrix of Φ.
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Remark. It’s worth noting that it’s much easier to pull a differential form back over a map than it is to push a
vector field forward. We can always compute the pushforward of a single vector, but we cannot necessarily
transform a vector field F on D into a vector field on R using a smooth map Φ: D → R. If Φ fails to be
injective, then we can find a point q ∈R with multiple preimages p1, p2 ∈D. How do we decide whether to
push F(p1) or F(p2) forward? On the other hand, if Φ fails to be surjective, then we will find points in R at
which there’s no reasonable candidate for our pushforward vector. There are remedies to these problems, but
you should convince yourself that pullbacks don’t present the same sort of trouble.
Exercise 9.12. Verify that Φ∗( f λ) = ( f ◦Φ)Φ∗λ.
Example 9.13. As a first example, let’s compute the pullback of a standard 1-form. We take Φ: D→R as
in the definition, and use coordinates u1, . . . , um on D and coordinates x1, . . . , xn on R. For some choice of
smooth functions fi1, . . . , fim on D we can write

Φ∗(d x i) = fi1 du1 + · · ·+ fim dum.

We can determine the function fi j by evaluating Φ∗(d x i) on the coordinate vector ∂u j
. That is,

Φ∗(d x i)(∂u j
) = ( fi1 du1 + · · ·+ fim dum)(∂u j

) = fi j ,

since du j(∂u j
) = 1, while the other standard 1-forms vanish on ∂u j

. Now recall that, for 1 ≤ i ≤ n and any
vector v ∈ Rn,

d x i(v) = ∂xi
· v.

So we find that, for any 1≤ i ≤ n and 1≤ j ≤ m,

Φ∗(d x i)(∂u j
) = d x i(Φ∗∂u j

) = ∂xi
·
∂Φ

∂ u j
=
∂Φi

∂ u j
.

The upshot is that fi j =
∂Φi
∂ u j

, so

Φ∗(d x i) =
∂Φi

∂ u1
du1 + · · ·+

∂Φi

∂ um
dum, (9.1)

for any 1≤ i ≤ n. Notice that if we treat Φi : D→ R as a function in its own right, then (9.1) says
Φ∗(d x i) = dΦi .

That is, the pullback of the ith standard 1-form on R is the total differential of the ith component of Φ.
Remark. The above example uses the notation ∂u j

for a coordinate vector field. You’ve probably seen the
standard basis vectors for Rn denoted by e1, . . . ,en, and also treated these vectors as fields. Because we’ll be
dealing with multiple Euclidean spaces at one time (for instance, Rm and Rn), we will instead use the notation
∂u j

. If Rm has coordinates u1, . . . , um, then we will denote the standard basis vectors on Rm by ∂u1
, . . . ,∂um

.
Similarly, if we use coordinates x1, . . . , xn on Rn, then the standard basis vectors on Rn are denoted ∂x1

, . . . ,∂xn
.

Going forward, we will use this notation for any coordinate system without comment.
Example 9.14. The pullback might seem intimidating at first, but it’s really supposed to be automating some
familiar change-of-coordinates ideas. For instance, consider cylindrical coordinates1 Φ: R3

r,θ ,z → R
3
x ,y,z defined

by
Φ(r,θ , z) = (r cosθ , r sinθ , z).

We can use (9.1) to compute the pullbacks Φ∗(d x), Φ∗(d y), and Φ∗(dz). We have

Φ∗(d x) =
∂

∂ r
(r cosθ ) dr +

∂

∂ θ
(r cosθ ) dθ +

∂

∂ z
(r cosθ ) dz = cosθ dr − r sinθ dθ

Φ∗(d y) =
∂

∂ r
(r sinθ ) dr +

∂

∂ θ
(r sinθ ) dθ +

∂

∂ z
(r sinθ ) dz = sinθ dr + r cosθ dθ

Φ∗(dz) =
∂

∂ r
(z) dr +

∂

∂ θ
(z) dθ +

∂

∂ z
(z) dz = dz.

In our less rigorous days we might have written
x = r cosθ ⇒ d x = cosθ dr − r sinθ dθ

y = r sinθ ⇒ d y = sinθ dr + r cosθ dθ

z = z ⇒ dz = dz,

1As written here, Φ is not injective, but the pullback doesn’t care about this.
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where the equations on the right are obtained as a sort of total differential. Now that we know what the
symbols d x , d y, and dz mean, we can express this change of variables more accurately. In practice, our scratch
computations are done just as before: we imagine that Φ is a substitution of variables and take differentials.
But then we write it up as a formal pullback so that we can maintain our smug attitude towards physicists.

It’s not totally unreasonable to think of the pullback as some sort of "Jacobian for forms." Just like the
Jacobian matrix of Φ linearizes Φ in order to tell us the effect on a given vector, the pullback is a linearization
of Φ which tells us the effect of Φ on a k-form, except that we pull forms backwards rather than push them
forward. Also like the Jacobian, the pullback plays nicely with products and derivatives. For any open subset
R ⊂ Rn and differential forms η,λ ∈ Ω•(R), we have

Φ∗(η∧λ) = (Φ∗η)∧ (Φ∗λ) and Φ∗(dη) = d(Φ∗η). (9.2)

In some sense, these equations verify that, however Φmay distort differential forms, this distortion is accounted
for by the pullback. Our final two examples verify (9.2). In order to verify the wedge product formula, we
will use the following algebraic fact.
Exercise 9.15. Show that if λ1, . . . ,λk are 1-forms on an open subset of Rn, then

(λ1 ∧ · · · ∧λk)(v1, . . . ,vk) = det







λ1(v1) · · · λ1(vk)
... . . . ...

λk(v1) · · · λk(vk)






,

for any vectors v1, . . . ,vk in Rn.
Example 9.16. Let’s verify the first part of (9.2), which tells us that pullback plays nicely with wedge product.
Exercise 9.12 verifies this in the case that one of the parties to our wedge product is a 0-form, and now we
consider a higher-order wedge product of 1-forms. Suppose that I = (i1, . . . , ik) is a multi-index of integers
between 1 and n. Then we find that

(Φ∗d x I )(v1, . . . ,vk) = d x I (Φ∗v1, . . . ,Φ∗vk) = (d x i1 ∧ · · · ∧ d x ik )(Φ∗v1, . . . ,Φ∗vk)

= det







d x i1(Φ∗v1) · · · d x i1(vk)
... . . . ...

d x ik (Φ∗v1) · · · d x ik (vk)






= det







(Φ∗d x i1)(v1) · · · (Φ∗d x i1)(vk)
... . . . ...

(Φ∗d x ik )(v1) · · · (Φ∗d x ik )(vk)







= ((Φ∗d x i1)∧ · · · ∧ (Φ∗d x ik ))(v1, . . . ,vk).

In case you don’t believe the third equality, we point out that the jth row of the matrix whose determinant it
computes is the i j

th row of the matrix whose columns are Φ∗v1, . . . ,Φ∗vk. The final equality uses the result of
Exercise 9.15. So we have verified that Φ∗d x I = (Φ∗d x i1)∧ · · · ∧ (Φ∗d x ik ). The more general property given by
(9.2) then follows from the following exercise, which is solved using properties of the wedge product.
Exercise 9.17. Using the above formula for Φ∗d x I , show that Φ∗(d x I ∧ d x J ) = (Φ∗d x I ) ∧ (Φ∗d x J ), for any
appropriate multi-indices I and J . Then show that Φ∗(η∧λ) = (Φ∗η)∧ (Φ∗λ) for any forms η, λ on R.
Exercise 9.18. Using the map Φ: R3

r,θ ,z → R
3
x ,y,z from Example 9.14, show that

Φ∗(d x ∧ d y ∧ dz) = r dr ∧ dθ ∧ dz.

This is reminiscent of the "distortion factor" induced by Φ back in part one of the course.
Exercise 9.19. Consider the map Φ: R3

ρ,θ ,ϕ → R
3
x ,y,z defined by

Φ(ρ,θ ,ϕ) := (ρ sinϕ cosθ ,ρ sinϕ sinθ ,ρ cosϕ).

Make a conjecture about the pullback Φ∗(d x ∧ d y ∧ dz), and then compute this pullback.
Finally, we verify the second boxed formula in (9.2), which tells us that pullback is compatible with

differentiation.
Example 9.20. Consider a k-form η on an open subset R of Rn, along with a smooth function Φ: D→R,
for some open subset D of Rm. We want to show that Φ∗(dη) = d(Φ∗η). Say we have a point p in D, along
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with vectors v1, . . . ,vk+1 based at p, which we treat as constant vector fields on D. For each 1≤ j ≤ k+ 1, let’s
define a function f j : R→ R via

f j(q) := ηq(Φ∗v1, . . . ,ÕΦ∗v j , . . . ,Φ∗vk+1).

Notice that
d(Φ∗η)p(v1, . . . ,vk+1) =

k+1
∑

j=1

(−1) j+1Dv j
( f j ◦Φ)

�

�

�

�

p

.

On the other hand, we find that

(Φ∗(dη))p(v1, . . . ,vk+1) = (dη)Φ(p)(Φ∗v1, . . . ,Φ∗vk)

=
k+1
∑

j=1

(−1) j+1DΦ∗v j
f j

�

�

�

�

Φ(p)

=
k+1
∑

j=1

(−1) j+1Dv j
( f j ◦Φ)

�

�

�

�

p

,

where the last equality uses the chain rule for directional derivatives:

Dv( f ◦Φ)
�

�

�

�

p

= DΦ∗v f

�

�

�

�

Φ(p)

,

for any smooth function f : R→ R. So indeed, Φ∗(dη) = d(Φ∗η).
The pullback will be crucial to our definition of integration over parametrized subsets of Rn. Loosely, it’s

straightforward to integrate an n-form over an open subset of Rn: there is a natural way to treat an n-form
on Rn as a real-valued function, and we’ll just integrate this function as in part one of the course. But if we
want to integrate a k-form over a k-dimensional subset S of Rn — with k < n — we’ll need a parametrization
Φ: D→ Rn, where D is an open subset of Rk. (The existence of such a parametrization will more or less be
what we mean when we say that S is k-dimensional.) We can then realize our integral over S as an integral
over D via the pullback Φ∗.

9.3 Day 25: Integrating k-forms

Goals

By the end of today’s class, we should be able to do the following.
1. Integrate top-degree forms over certain subsets of Euclidean space.
2. Integrate differential k-forms over parametrized k-surfaces.

Most mathematicians, when asked, "What’s a differential form?" will answer, "It’s a thing to be integrated."
My own feeling is that this is a bit unfair to differential forms: they’re useful not only for integral calculus,
but also differential calculus, and allow us to express partial differential relations in coordinate-free ways. But
today we overlook this objection and think about what it means to integrate a differential form.

9.3.1 Top-degree forms

We start with integration of differential forms over open subsets of Rn. Our first observation is that integration
in this setting is defined only for top-degree forms.

Definition. LetR be an open subset of Rn, and let λ be a differential form onR. We call λ a top-degree
form on R if λ is an n-form.

Top-degree forms are particularly special because, up to multiplication by elements of C∞(R), there’s just
one. That is, any top-degree form λ on an open subset R of Rn can be written as

λ= f d x1 ∧ · · · ∧ d xn,

for some smooth function f ∈ C∞(R). The upshot is that, given the coordinates x1, . . . , xn, we can identify
the set of top-degree forms on R with the set of smooth functions on C∞(R). But we already know how to
integrate these!
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Definition. Let R be an compact subset of Rn which has nonempty interior, and whose boundary has
volume zero2, and let λ be a differential n-form on �R. Then the integral of λ over R is given by

∫

R
λ :=

∫

R
f ,

where λ= f d x1 ∧ · · · ∧ d xn, and the integral on the right is defined as in part one of our course.

Remark. Back in part one of the course, we’d be wringing our hands over whether or not f is integrable over
R. But remember that in this last part of the course, all functions are assumed to be infinitely differentiable.
In particular, f is continuous, and thus integrable. One can think about what happens if f is not assumed to
be smooth, but we won’t concern ourselves with this right now.

Honestly, this definition probably feels like a bit of a letdown. Why go through the pain of defining
differential forms if integrating them is really just the same as integrating functions? One glib-sounding
answer is that we were never really integrating functions — the forms were there the entire time. This has
some truth to it, and we try to give a hint as to what this means in Section 9.3.4 below. Another reason to
integrate forms rather than functions is that integration of functions is not invariant under coordinate change,
while coordinate-invariance is built into the definition of differential forms.

To see what we mean, suppose we have a smooth, bijective, regular3 map Φ: D→R between appropriate
subsets of Rn. We can reasonably think of Φ as giving us a new coordinate system on R — compare Φ with
the coordinate systems from Week 3 — and thus we can integrate f against the coordinates of D. It doesn’t
seem far-fetched then, that we would want to the value given by the integral

∫

D
f ◦Φ

to agree with
∫

R f , since Φ is just a "reparametrization" of the R. But of course we know that this fails — we
spent a couple of days earlier this quarter thinking about the change of variables theorem, which tells us how
to correct the function f ◦Φ with a distortion factor. The notion of composition for differential forms is given
by the pullback, and what we want to see now is that the distortion factor is built into the pullback.

Theorem 9.21: Pullback of top-degree forms

Let Φ: D→R be a smooth map between open subsets of Rn, and consider coordinates u1, . . . , un on D
and coordinates x1, . . . , xn on R. Then

Φ∗(d x1 ∧ · · · d xn) = detΦ∗ du1 ∧ · · · ∧ dun,

where Φ∗ is the n× n Jacobian matrix of Φ.

Proof. To ease our notational burden slightly, let’s define the multi-index I = (1, . . . , n), so that

d x I = d x1 ∧ · · · ∧ d xn and duI = du1 ∧ · · · ∧ dun.

Now consider a collection of vectors v1, . . . ,vn in Rn, thought of as tangent vectors on the domain side of Φ.
Unwinding definitions gives

(Φ∗d x I )(v1, . . . ,vn) = d x I (Φ∗v1, . . . ,Φ∗vn) = det





| |
Φ∗v1 · · · Φ∗vn

| |





= det



Φ∗





| |
v1 · · · vn

| |







= detΦ∗ · det





| |
v1 · · · vn

| |





= detΦ∗ duI (v1, . . . ,vn).

2These conditions can be recalled from part one of the course.
3Meaning that the Jacobian determinant is nowhere zero.
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Because this computation holds for any collection of vectors v1, . . . ,vn, we find that Φ∗d x I = detΦ∗ duI , as
desired.
Remark. We could alternatively prove Theorem 9.21 using the fact that pullback distributes over wedge
product, as well as some algebraic facts about the determinant. Thinking about that proof is probably not
a bad use of your time; the approach used here was meant to emphasize that top-degree forms compute
volumes, and the Jacobian determinant of Φ tells us how Φ distorts these volumes.

You should compare the result of Theorem 9.21 with your solutions to Exercises 9.18 and 9.19.

Combined with Theorem 3.5, Theorem 9.21 tells us that pullback is the correct notion of composition for
differential forms. Namely, when we pull our integrals back over smooth, orientation-preserving maps, we
simply pull back our forms as well.

Theorem 9.22: The change of variables theorem for forms

Let Φ: D→R be a smooth map between compact subsets of Rn with nonempty interiors, and whose
boundaries have volume zero. Let λ be a differential n-form on �R. If the Jacobian determinant of Φ is
positive4at all points of �D, then

∫

D
Φ∗λ=

∫

R
λ.

Exercise 9.23. Prove Theorem 9.22.
Perhaps this still seems like a poor use of our time — we’ve spent so many hours developing differential

forms so that we can compute a pullback instead of a Jacobian determinant? All this to move a star from the
bottom of Φ to the top? The importance of this coordinate-invariance for integration of differential forms will
become clearer in the next subsection, where we integrate over parametrized surfaces.

9.3.2 Parametrized surfaces

We now give a quick definition of some objects over which we can integrate differential forms.

Definition. Let R be an open subset of Rn. For any integer k ≥ 0, a parametrized k-surface in R is a
smooth map

Φ: D→R,

where D is a compact subset of Rk with nonempty interior whose boundary has volume zero. We call D
the parameter domain of Φ.

Remark. It’s important to notice that the object we’re calling a parametrized surface is the map itself — not
the image of the map. This may not always match our intuition, but will be an important point in writing
down integrals.
Example 9.24. Say we have a parameter domain D ⊂ Rk — that is, a compact subset of Rk with nonempty
interior whose boundary has volume zero. Then the inclusion map ι : D→ Rk, defined by

ι(x) := x ,

is a parametrized k-surface in Rk.
Example 9.25. A parametrized 0-surface in R ⊂ Rn is simply the inclusion of a point. By convention, R0 is a
set containing a single point — we often write R0 = {∗}— and thus there is only one parameter domain in
R0: all of R0. So a parametrized 0-surface is a smooth map

Φ: R0→R

which is to say any map Φ: {∗} →R. (The smooth requirement is treated as vacuous here.)
4When detΦ∗ > 0, we say that Φ is orientation-preserving.
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It’s important to note that we do not require our parametrized k-surfaces to be simple or regular in any
way. Because we focus on the data of the map itself — rather than the image of the map — we will be able to
define integration without caring about whether or not the k-surface self-intersects or fails at some points to
be regular.

9.3.3 Integration over parametrized surfaces

We’ve now set the stage for integration of differential k-forms over parametrized k-surfaces.

A parametrized k-surface is a map whose image lives in an open subset R of Rn, and we imagine5 this
image to be k-dimensional. So it makes sense that we would want to integrate elements of Ωk(R) over our
k-surface. Theorem 9.22 tells us that it should be safe enough to simply pull a k-form on R back to a k-form
on D.

Definition. With k ≥ 0 fixed, let Φ: D→R be a parametrized k-surface in Rn, for some open subset R
of Rn. For any differential k-form λ on R, we define the integral of λ over Φ to be

∫

Φ

λ :=

∫

D
Φ∗λ.

Exercise 9.26. Convince yourself that integrating a 0-form over a parametrized 0-surface simply amounts to
evaluating a function at a point.

Integration over parametrized k-surfaces is meant to generalize the line integrals and surface integrals
that we computed in part two of the course. Indeed, while we pretended to define line integrals by doing
some sort of partitioning-the-curve nonsense, we defined the surface integral of a scalar function using
parametrizations of the surface. (Really, we did! Go back and look at Equation 6.2 on page 74.) But our
fear of computing areas of parallelograms in dimensions greater than three restricted us6 to surfaces in R3,
and this parametrization-focused approach forced us to include an ugly distortion factor in our definition.
Our forms-based approach builds the distortion factors into our definition of composition; composition is
encapsulated by pullback, and distortion factors are baked into the pullback.

At the risk of repeating ourselves, let’s think about what happens if we try to define integration of functions
over parametrized k-surfaces in the way that seems most natural. Given a parametrized k-surface Φ: D→R
and a smooth function f : R→ R, it seems perfectly natural to expect the integral of f over Φ to be given by

∫

D
f ◦Φ,

since f ◦Φ: D→ R is the pullback of f toD. The problem is that this integral is very sensitive to reparametriza-
tion. Say we have a smooth, bijective map Ψ : D′→D, for some other parameter domain D′ ⊂ Rk. We think
of Ψ as a reparametrization; not only does Φ ◦Ψ parametrize the same k-surface as does Φ, it preserves any
simplicity, regularity, or lack thereof enjoyed by Φ. So we should expect the integral of f over Φ ◦Ψ to be
computed by

∫

D′
f ◦ (Φ ◦Ψ).

But of course this can’t be so. We know that
∫

D
f ◦Φ=

∫

D′
( f ◦Φ ◦Ψ)|detΨ∗|,

so we are essentially asking detΨ∗ to be everywhere equal to ±1. If we want to integrate functions over
parametrized k-surfaces, we are forced to incorporate the distortion factors of our parametrizations into the
definition. There is a way to do this without differential forms — the Gramian determinant of Exercise 8.26
makes an appearance — but the machinery of differential forms gives us an elegant way to package all of
these distortion factors into one algebraic gadget.

5There are some problems with this interpretation of dimension, but we’ll not address these here. The problems are tied up with the
fact that our parametrized k-surface need not be simple or regular.

6I think Fred may have discussed surfaces in higher dimensions in discussion session, though.
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Example 9.27. Consider the 2-form ν ∈ Ω2(R3) defined by
ν= x d y ∧ dz − y d x ∧ dz + z d x ∧ d y,

and consider the parametrized 2-surface Φ: [0,π]ϕ × [0,2π]θ → R3 defined by
Φ(ϕ,θ ) := (sinϕ cosθ , sinϕ sinθ , cosϕ).

Let’s compute
∫

Φ
ν. We start by computing the pullback of ν under Φ. We have

Φ∗d x =
∂

∂ ϕ
(sinϕ cosθ ) dϕ +

∂

∂ θ
(sinϕ cosθ ) dθ = cosϕ cosθ dϕ − sinϕ sinθ dθ

Φ∗d y =
∂

∂ ϕ
(sinϕ sinθ ) dϕ +

∂

∂ θ
(sinϕ sinθ ) dθ = cosϕ sinθ dϕ + sinϕ cosθ dθ

Φ∗dz =
∂

∂ ϕ
(cosϕ) dϕ +

∂

∂ θ
(cosϕ) dθ = − sinϕ dϕ.

From this we can compute
Φ∗(d y ∧ dz) = sin2ϕ cosθ dϕ ∧ dθ

Φ∗(d x ∧ dz) = − sin2ϕ sinθ dϕ ∧ dθ

Φ∗(d x ∧ d y) = cosϕ sinϕ dϕ ∧ dθ ,

and at last we see that
Φ∗ν= (x ◦Φ)Φ∗(d y ∧ dz)− (y ◦Φ)Φ∗(d x ∧ dz) + (z ◦Φ)Φ∗(d x ∧ d y)

= (sinϕ cosθ )(sin2ϕ cosθ ) dϕ ∧ dθ + (sinϕ sinθ )(sin2ϕ sinθ ) dϕ ∧ dθ

+ (cosϕ)(cosϕ sinϕ) dϕ ∧ dθ

= (sin3ϕ cos2 θ + sin3ϕ sin2 θ + sinϕ cos2ϕ) dϕ ∧ dθ

= sinϕ dϕ ∧ dθ .

So we find that
∫

Φ

ν=

∫

[0,π]×[0,2π]

Φ∗ν=

∫

[0,π]×[0,2π]

sinϕ dϕ ∧ dθ .

Now dϕ ∧ dθ is the standard top-degree form on [0,π]ϕ × [0, 2π]θ , so this last integral simply asks us to
compute the integral (in the sense of part one of the course) of sinϕ. That is,

∫

Φ

ν=

∫

[0,π]×[0,2π]

sinϕ dϕ ∧ dθ =

∫

[0,π]×[0,2π]

sinϕ = · · ·= 4π .

Exercise 9.28. (Challenge) Suppose that Φ: D→ R3 is a simple, regular, parametrized 2-surface in R3, and
let S denote the image of Φ. With coordinates (u, v) on D, let

n(u, v) :=
Φu ×Φv

‖Φu ×Φv‖
denote the oriented unit normal vector to S determined by Φ. If we pretend that n(u, v) = 〈n1, n2, n3〉 is
defined on all of R3 (rather than just on S), we can define a 2-form

νS := n1 d y ∧ dz − n2 d x ∧ dz + n3 d x ∧ d y

on R3. Under this pretense, prove that
∫∫

S
f dS =

∫

Φ

f νS

for any smooth function f : S → R, where the integral on the left is defined as in week 6. In light of this
exercise, explain why our answer of 4π makes sense in Example 9.27.
Exercise 9.29. (Challenge) Exercise 9.28 tells us how to interpret scalar surface integrals in terms of
differential forms, for surfaces in R3. Under the same assumptions as in Exercise 9.28, let F= 〈F1, F2, F3〉 be a
smooth vector field on R3, and define

ωF := F1 d y ∧ dz − F2 d x ∧ dz + F3 d x ∧ d y.

Prove that
∫∫

S
F · dS=

∫

Φ

ωF,

where, once again, the integral on the left is defined as in week 6.
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9.3.4 Why forms?

In this subsection, we’ll briefly try to convince ourselves that differential forms have been lurking in the
background of our integrals all along. There isn’t really any new material here, and certainly nothing for
which you’re directly responsible in this class. But hopefully this informal discussion helps to motivate the
integration we introduced this week.

The very first integral you ever defined was probably the definite integral of a continuous function on
a closed interval, say f : [a, b]→ R. The purpose of the integral was to measure the signed area between
the graph y = f (x) and the x-axis, bounded by the lines x = a and x = b. Of course this area will depend
on the (varying) height of y = f (x), as well as the length of the interval [a, b]. In particular, the definite
integral

∫ b

a
f (x) d x depends on a choice of function f , and also on some notion of length for the interval [a, b].

On the other hand, the area we compute should not be affected by the names we give to the points in
the interval [a, b]. That is, if we use some nonstandard coordinate system on [a, b], the value of the integral
shouldn’t change, provided we’re still using the same ruler — i.e., notion of length — from before.

Let’s give some names to the players here. The integral over which we’re trying to integrate is I := [a, b],
and let’s say we have a coordinate system

u: [c, d]→ I .

Here we’re thinking of I as an abstract geometric object over which we want to integrate; this object has a
preferred notion of length for (tangent) vectors, but has no a priori preferred coordinate system. We’re going
to use the coordinate system u, and the value we compute for the integral shouldn’t depend on u.

The ruler on I is not particularly interesting: it’s just the standard 1-form d x : R→ R. Tangent vectors to
points in I live in R, which has the standard basis vector ∂x , and the length form — which we’ll call λ— on I
is given by

λ(v) := d x(v) = v · ∂x .

Of course this is overkill if we’re just trying to reproduce the integrals you computed in your first calculus class,
but the point is that our definition of the integral of f over I depends on a preferred notion of signed length on I .

As we’re well aware, we approximate the integral of f over I by partitioning I into many subintervals,
approximating the value of f over each of these subintervals, and then summing the resulting areas. One
complication here is that we’re treating I as some abstract geometric object; so the only reasonable way to
subdivide I is using a coordinate system. For instance, we have the coordinate system u: [c, d]→ I , which
has parameter domain [c, d]. We can choose a partition

P = {c = t0 < t1 < · · ·< tN = d}

of the parameter domain, for some large integer N � 1, and this leads to a subdivision of I defined by
I j := u([t j−1, t j]), for 1≤ j ≤ N .

If P is a very fine partition, then we should have
∫

I

f d x ≈
N
∑

j=1

f (u(t j−1)) length(I j).

Here we’re approximating the integral with a left-hand Riemann sum, and pretending that we can’t easily
compute the length of the subinterval of I j .

The remaining question is how we compute the lengths of the subintervals I j . Given what we know about
I , this is easy to do, but we’re trying to treat I as an abstract geometric object where we know how to compute
lengths of vectors (using λ), but not of subsets. Our plan, then, is to approximate the subintervals I j with
vectors tangent to I . In the parameter domain of u we can consider the vectors

v j := (t j − t j−1)∂t , for 1≤ j ≤ N .

We treat v j as based at t j−1 ∈ [c, d], so that v j spans the subinterval [t j−1, t j] of [c, d]. Our plan, then, is to
push v j forward from [c, d] to I . Once we have a tangent vector to I , we can use λ to measure its length.

125



Math 32BH Lecture Notes Properties of Forms

Since v j is a vector based at t j−1, there’s really just one way to push it forward via u: we consider the vector
(u∗)t j−1

v j , where (u∗)t j−1
denotes the Jacobian matrix u∗ of u, evaluated at t j−1. So, altogether, we find that

length(I j)≈ λ((u∗)t j−1
v j).

Of course the expression on the right is just the pullback form u∗λ, evaluated at the point t j−1 and on the
vector v j . So

∫

I

f d x ≈
N
∑

j=1

f (u(t j−1)) (u
∗λ)t j−1

(v j) =
N
∑

j=1

f (u(t j−1)) (u
∗λ)t j−1

(∂t) (t j − t j−1).

At this point we recognize the final expression as a left-hand Riemann sum for the function g : [c, d]→ R
defined by

g(t) := f (u(t)) (u∗λ)t(∂t).

In particular, this is a left-hand Riemann sum using the standard coordinate system on [c, d]. So this means
that

∫

I

f d x =

∫

[c,d]

g d t =

∫

[c,d]

( f ◦ u)u∗λ=

∫

[c,d]

u∗( f d x).

In the language of differential forms, we see that we weren’t integrating the function f , with d x just riding
along as notation. Instead, we were integrating the 1-form f d x . The value of this integral is independent of
our coordinate system, provided we transform the 1-form f d x appropriately.

Said another way, the 1-form d x gives us our ruler — a way to measure lengths — and this ruler is
unchanged under coordinate transformations (though the way we write the ruler will change). We can’t
compute areas under curves without some notion of length, and this 1-form is precisely what gives us our
lengths.

This probably still feels pretty fishy. The best way to get your head around the ideas that appear here is to
consider even more cases.
Exercise 9.30. Say we have an oriented curve C ⊂ Rn which admits a simple, regular, positively-oriented
parametrization. Under these assumptions, it’s possible to write down a 1-form λ on Rn so that λp(v) gives
the signed magnitude of v, for every point p ∈ C and every vector v tangent to C at p. Given a simple, regular
parametrization r: [a, b]→ R2 of C, run through the above discussion in order to define the integral over C of
a continuous function f : C→ R. Convince yourself that all we’ve done is integrate the pullback of the 1-form
λ over [a, b].

Just as integration in one dimension requires some notion of (signed) length, integration in two dimensions
requires a notion of (signed) area.
Exercise 9.31. Consider a surface S ⊂ Rn, assuming that at every point p ∈ S we can make sense of the
tangent space to S at p, and that this tangent space is two-dimensional. Suppose we have a 2-form ω defined
on Rn with the property that ωp(v,w) measures the signed area of the parallelogram spanned by v and w, for
every p ∈ S and vectors v,w tangent to S at p. (Don’t bother trying to write down an expression for λ— just
take it as something that exists.) Assuming we have a bijective parametrization

Φ: D→ Rn

of S, work through the above argument to convince yourself that the surface integral
∫

S f dS is simply the
integral

∫

D Φ
∗( f ω) of the pullback of f ω over D, for any continuous function f : S → R.

Note. Our mantra throughout this section was that integration over a closed interval requires both a function
and a notion of length on the interval, and we then found that the length was encoded by a differential
form. This undersells differential forms a bit. It’s true that we need a notion of length for our domain when
writing down the definite integral of a function on a closed interval, and we need a notion of area for our
domain when integrating functions of two variables. It’s also true that the framework of differential forms
was developed to give us a single, cohesive algebraic framework for these various notions of integration.
But this framework is sufficiently robust that we can write down integrals which have nothing to do with
length or area. In a setting where we can’t talk about the lengths of vectors, it will be impossible to speak
meaningfully about the integral of a function, but we can still integrate differential forms. Maybe right now
it’s not clear why such a notion of integration would be useful, but many notions of action in physics are
defined by integrals which do not necessarily care about underlying lengths.
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9.4 Interlude: The algebra (and calculus) of differential forms on Rn

Our approach to the algebra of differential forms on (open subsets of) Rn was to write everything down
in terms of standard k-forms d x I . This made our definitions feel somewhat less abstract, but may have
obfuscated some of the important algebraic properties we use when actually manipulating forms.

Our definition of the exterior derivative is also not particularly useful for actual computation. This is
similar to the single-variable calculus case, where we write down a definition of the derivative that computes
a limit, but then quickly learn rules that allow us to compute a large class of derivatives without directly
thinking about the definition.

This bonus section summarizes many properties of differential forms and the various operations on them
that we’ve defined. You should be able to verify any of these properties using the definitions given above7;
indeed, several appeared as exercises. Also, the properties are not independent of one another: some are
special cases of other properties on the list. We make no claim that the list is exhaustive.

Throughout, R is an open subset of Rn, p is a point in R, λ and η are k- and `-forms on R, respectively,
and vi is either a vector based at p or a vector field defined on R, for any subscript i. We also have a smooth
map Φ: D→R, where D is an open subset of Rm.

• (forms are multi-linear) For any auxiliary vector field w on R,

λ(v1, . . . ,vi , . . . ,vk) +λ(v1, . . . ,w, . . . ,vk) = λ(v1, . . . ,vi +w, . . . ,vk),

where w is in the ith position.
• (forms are alternating) If the ith and jth vectors in the expression λ(v1, . . . ,vk) are swapped, the output

is scaled by −1.
• (forms are alternating, again) If the vectors v1, . . . ,vk are linearly dependent, then λ(v1, . . . ,vk) = 0. In

particular, if vi = v j for some i 6= j, then λ(v1, . . . ,vk) = 0.
• (dimension property) If k > n, then λ= 0.
• (wedges of standard forms) For any multi-index I = (i1, . . . , ik) of integers between 1 and n,

d x I = d x i1 ∧ · · · ∧ d x ik .

• (skew-commutativity of wedge product) η∧λ= (−1)k`λ∧η

• (associativity of wedge product) For any λ,η,θ ∈ Ω•(R),

(λ∧η)∧ θ = λ∧ (η∧ θ ).

• (homogeneity of wedge product) If c is a scalar, then

(cλ)∧η= c (λ∧η) = λ∧ (cη).

• (distributivity of wedge product) If η and θ have the same degree, then

λ∧ (η+ θ ) = λ∧η+λ∧ θ .

• (1-forms square to zero) If λ is a 1-form, then λ∧λ= 0.
• (wedge products of 1-forms) If λ and η are 1-forms, then

(λ∧η)(v1,v2) = λ(v1)η(v2)−λ(v2)η(v1).

• (derivative in terms of basis) If we write λ=
∑

I fI d x I , then

dλ=
∑

I

d fI ∧ d x I =
∑

I

n
∑

j=1

∂ f
∂ x j

d x j ∧ d x I .

In particular, dλ is a (k+ 1)-form.
7Some of the properties are actually built into the definitions.
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• (d is linear) If c is any scalar and η and θ have the same degree, then

d(cλ) = c dλ and d(η+ θ ) = dη+ dθ .

• (product rule for 0-forms) For any smooth function f ∈ Ω0(R), d( f λ) = d f ∧ λ+ f dλ. In particular,
d( f d x I ) = d f ∧ d x I .

• (Leibniz rule) d(λ∧η) = dλ∧η+ (−1)kλ∧ dη

• (nilpotence of d) d(dλ) = 0

• (pullback on 0-forms) For any f ∈ Ω0(R), Φ∗ f = f ◦Φ.
• (pullback is linear)If c is any scalar and η and θ have the same degree, then

Φ∗(cλ) = cΦ∗λ and Φ∗(η+ θ ) = Φ∗η+Φ∗θ .

• (pullback distributes over wedge products) Φ∗(λ∧η) = (Φ∗λ)∧ (Φ∗η)
• (pullback commutes with derivatives) d(Φ∗λ) = Φ∗(dλ)

• (pullback is contravariant) If Ψ : D′ → D is a smooth map with basis D′ and open subset of some
Euclidean space, then (Φ ◦Ψ)∗λ= Ψ∗Φ∗λ.

• (pullback on standard 1-forms) If Rn has coordinates x1, . . . , xn and Rm has coordinates u1, . . . , um, then

Φ∗d x i =
m
∑

j=1

∂Φi

∂ u j
du j ,

where Φ= (Φ1, . . . ,Φn).
• (pullback of top-degree forms) If m= n, then Φ∗d x I = detΦ∗ duI , where we use coordinates u1, . . . , un

on D and x1, . . . , xn on R, and where I = (1, . . . , n).
Note: This list may grow/be rearranged over the next several days.
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10 Week 10
This week our course reaches its crescendo: the proof of the general version of Stokes’ theorem. We start by
introducing singular k-cubes, special type of parametrized k-surface, and we learn how to take boundaries
of k-cubes to produce singular k-chains. Then we give a proof of Stokes’ theorem for k-chains. Hopefully
we’ll have time at the end of the week to discuss some interesting consequences of Stokes’ theorem, as well as
further topics you can pursue.

10.1 Day 26: Cubes and chains

Goals

By the end of today’s class, we should be able to do the following.
1. Define singular k-cubes and singular k-chains.
2. Compute the pushforward of a singular k-chain.

Today we introduce the special kind of parametrized k-surface for which we will prove Stokes’ theorem.
The primary reason that we restrict our attention to the special k-surfaces is because of the (relative) ease
with which we can discuss their boundaries.

10.1.1 Cubes and chains

The objects of interest to us will be singular k-cubes, which are simply parametrized k-surfaces whose
parameter domain is the Cartesian k-cube.

Definition. For any integer k ≥ 1, the Cartesian k-cube is the set [0,1]k obtained by taking the Cartesian
product of [0,1] with itself k times. That is,

[0, 1]k = {(u1, . . . , uk) : ui ∈ [0,1]}.

The Cartesian 0-cube, denoted [0,1]0, is a set with exactly one element.

Remark. We’ll often write [0,1]0 = {∗}, so that the unique element of [0,1]0 is called ∗, but the name of this
element doesn’t really matter.

Definition. For any integer k ≥ 0, the standard k-cube is the map I k : [0, 1]k → Rk defined by I k(u) := u.
For any open subset R of Rn, a singular k-cube (or k-cube) in R is a smooth map c : [0, 1]k →R.

Remark. Often, our trademark laziness will kick in and we’ll refer to singular k-cubes simply as k-cubes.
The adjective singular is present because we don’t require any regularity from a singular k-cube1. For

instance, the image in R of a singular k-cube could be a single point, which we typically think of as 0-
dimensional rather than k-dimensional. At first this sounds like a problem, but in time we’ll see that allowing
degeneracies such as this ensures that the set of all singular k-cubes in R has nicer properties than would
some more restrictive set which expects its cubes to be regular.
Exercise 10.1. Characterize all the singular 0-cubes in a subset R of Rn.
Example 10.2. Consider the map c0 : [0, 1]2→ R3 defined by

c0(u1, u2) := (sin(πu1) cos(2πu2), sin(πu1) sin(2πu2), cos(πu1)).

(We will typically use coordinates u1, . . . , uk on the Cartesian k-cube [0,1]k.) Since every function in sight is
smooth, so is the map c0, and thus c0 is a singular 2-cube. It should be clear that the image of c0 is the unit

1The vocabulary kind of makes it sound like a singular k-cube is prohibited from being regular, but that’s not the case. With singular
k-cubes, regularity is allowed to fail, but not required to do so.
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sphere S2, but we think of c0 as an object in its own right. Notice that we could also consider c1 : [0, 1]2→ R3,
defined by

c1(u1, u2) := (sin(2πu1) cos(2πu2), sin(2πu1) sin(2πu2), cos(2πu1)).

This will trace out the unit sphere S2 twice — a generic point in S2 has two preimages. But we don’t think of c1

as two copies of c0; instead, c0 and c1 are independent objects. Finally, we can consider a map c̃ : [0, 1]k → R3,
for any k ≥ 2, defined by

c̃(u1, . . . , uk) := (sin(πu1) cos(2πu2), sin(πu1) sin(2πu2), cos(πu1)).

Again, the image of c̃ is S2, but this time c̃ is a singular k-cube, with k not necessarily equal to 2. In general,
singular k-cubes can be expected to trace out subsets which have dimension at most k (but possibly smaller).

We said that we prefer singular k-cubes to more general parametrized k-surfaces because we understand
their boundaries. But the boundary of a singular k-cube is not itself a singular k-cube. We solve this problem
by introducing singular k-chains.

Definition. For any integer k ≥ 0 and any open subset R of Rn, a singular k-chain (or just k-chain) in
R is a finite integer combination of singular k-cubes. That is, a singular k-chain σ in R has the form

σ =
N
∑

j=1

n j c j ,

for some N ≥ 0, where each n j is an integer, and each c j : [0, 1]k →R is a singular k-cube in R. If N = 0
(so that our sum is empty), we have the zero chain. The collection of all singular k-chains on R is
denoted Ck(R).

Remark. Though it is a linear combination of smooth maps, we do not think of a singular k-chain as a map.
Instead, we imagine the singular k-cubes c j to be the fundamental geometric objects, and a singular k-chain
is then a collection of k-cubes, counted with multiplicity (the multiplicity is given by ni).
Exercise 10.3. Consider an annulus

A= {(x , y) : r2 < x2 + y2 < R2} ⊂ R2,

for some 0< r < R. Express A as the image of a singular 2-cube c, but note that ∂ A cannot be expressed as
such an image. Write down a singular 1-chain corresponding to ∂ A. We will soon be able to write down ∂ c, a
singular 1-chain. Keep in mind that ∂ c is not the same as ∂ A — one is a linear combination of smooth maps,
while the other is a subset of R2.
Remark. Intuitively, the collection Ck(R) behaves a lot like a vector space, where the "basis elements" are
the singular k-cubes in R. Of course this means that we have infinitely many basis elements, but this isn’t a
problem on its own. The real hurdle to being a vector space is the fact that scalar multiplication is limited to
integer values; this prevents us from doing some familiar scaling operations.

10.1.2 The pushforward

We saw above that a smooth map Φ: D→R between open subsets of Euclidean spaces leads to a pullback
map

Φ∗ : Ωk(R)→ Ωk(D),
for each k ≥ 0. The collections of singular k-chains on D and R work similarly to their respective collections
of k-forms, and instead of a pullback, Φ induces a pushforward.

Definition. Consider any smooth map Φ: D → R between open subsets D ⊂ Rm and R ⊂ Rn. The
pushforward map

Φ∗ : Ck(D)→ Ck(R)
is defined on singular k-cubes by

Φ∗c := Φ ◦ c

and extended linearly to singular k-chains.
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Remark. Notice that we have now overloaded the notation Φ∗. Previously this denoted the Jacobian matrix of
Φ, and now it denotes the pushforward. This is not a coincidence, and maybe we will explain the relationship
between these notions soon. In the meantime, our use of the notation Φ∗ should be clear from context.
Exercise 10.4. Realize an arbitrary singular k-cube in R as a pushforward of the standard k-cube.

Recall that the pullback is contravariant, meaning that (Ψ ◦Φ)∗ = Φ∗ ◦Ψ∗. Pushforward, on the other hand,
is covariant.
Proposition 10.5. Suppose we have smooth maps Φ: D→R and Ψ : R→W between open subsets of Euclidean
spaces. Then (Ψ ◦Φ)∗ = Ψ∗ ◦Φ∗.
Proof. If c : [0,1]k →D is a singular k-cube, then

(Ψ ◦Φ)∗c = (Ψ ◦Φ) ◦ c = Ψ ◦ (Φ ◦ c) = Ψ∗(Φ ◦ c) = Ψ∗(Φ∗c) = (Ψ∗ ◦Φ∗)c.

Because pushforward is defined to be linear, it is now easy to check that (Ψ ◦ Φ)∗σ = (Ψ∗ ◦ Φ∗)σ, for any
σ ∈ C(D). So indeed, (Ψ ◦Φ)∗ = Ψ∗ ◦Φ∗.

Hopefully it’s clear that pushforward does for chains what pullback does for forms. By using both operations,
we can express the change of variables theorem for singular k-chains. We first define integration over singular
k-chains in the obvious manner.

Definition. Let R be an open subset of Rn, and let σ be a singular k-chain in R. For any k ≥ 0 and any
differential k-form on R, the integral of λ over σ is given by

∫

σ

λ :=
N
∑

j=1

n j

∫

c j

λ,

where σ =
∑N

j=1 n j c j .

It can be helpful to think of integration as a bilinear pairing between Ck(R) and Ωk(R). We have
〈−,−〉: Ck(R)×Ωk(R)→ R defined by

〈σ,λ〉 :=

∫

σ

λ.

Properly calling this a bilinear pairing is a little tricky, since Ck(R) only admits scalar multiplication by integers
(rather than all real numbers), so we’ll just use this pairing informally.

Theorem 10.6: The change of variables theorem for chains

Let Φ: D→R be a smooth map between open subsets of Euclidean spaces, let σ ∈ Ck(D) be a singular
k-chain in D, and let λ ∈ Ωk(R) be a differential k-form on R. Then

∫

σ

Φ∗λ=

∫

Φ∗σ

λ.

Proof. First, suppose we have a singular k-cube c : [0, 1]k →D in D. Then the definition of integration over
k-surfaces, along with the contravariance of pullback, tells us that

∫

Φ∗c

λ=

∫

Φ◦c
λ=

∫

[0,1]k
(Φ ◦ c)∗λ=

∫

[0,1]k
c∗Φ∗λ=

∫

c

Φ∗λ.

Now if σ =
∑N

j=1 n j c j , then
∫

σ

Φ∗λ=
N
∑

j=1

n j

∫

c j

Φ∗λ=
N
∑

j=1

n j

∫

Φ∗c j

λ=

∫

Φ∗σ

λ,

as desired.
In terms of the integral pairing above, the change of variables theorem tells us that

〈Φ∗σ,λ〉= 〈σ,Φ∗λ〉,

for any singular k-chain σ on D and any differential k-form λ on R. For this reason, we like to think of Φ∗
and Φ∗ as adjoint to one another.
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Figure 10.1: The four faces of the standard 2-cube I2.

10.2 Day 27: The boundary operator

Goals

By the end of today’s class, we should be able to do the following.
1. Determine the boundary of a singular k-chain.
2. State some important properties of the boundary operator.

10.2.1 Boundaries

We now define the boundary operator on singular k-chains. We’ll see that computing the boundary of a
singular k-cube can be somewhat tedious, but not conceptually difficult, since the parameter domain [0,1]k

has an easy-to-describe boundary.

Definition. Fix integers k ≥ 1, 1 ≤ i ≤ k, and 0 ≤ a ≤ 1. Then the (i,a)-face of the standard k-cube
I k : [0,1]k → Rk is the singular (k− 1)-cube I k

i,a : [0, 1]k−1→ [0, 1]k defined by

I k
(i,a)(u1, . . . , uk−1) := (u1, . . . , ui−1, a

︸︷︷︸

ith entry

, ui , . . . , uk−1).

For any singular k-cube c : [0,1]k →R in R ⊂ Rn, the (i,a)-face of c is the singular (k− 1)-cube in R
defined by c(i,a) := c ◦ I k

(i,a).

Remark. Because a is an integer, we have either a = 0 or a = 1. So a singular k-cube has 2k faces: there are
k options for the value of i, and 2 options for the value of a.

The notation I k
(i,a) can be read as follows: we hold the ith component constant, and give it the value a.

Example 10.7. Consider the standard 1-cube I1 : [0, 1]→ R. This cube has two faces: the (1,0)-face and the
(1, 1) face. Each of these is a singular 0-cube, {∗} → [0, 1], defined by

I1
(1,0)(∗) = 0 and I1

(1,1)(∗) = 1,

respectively. Note that these correspond to the two endpoints of the interval [0,1].

Example 10.8. The standard 2-cube I2 : [0, 1]2→ R2 has four faces, corresponding to the two options for i
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and the two options for a. Each of these is a singular 1-cube [0,1]→ [0,1]2, and they are defined by

I2
(1,0)(u) = (0, u) I2

(1,1)(u) = (1, u)

I2
(2,0)(u) = (u, 0) I2

(2,1)(u) = (u, 1).

See Figure 10.1. Notice that if c : [0,1]2 → R is a not-necessarily-standard singular 2-cube, then the four
faces of c are given by

c(1,0)(u) = c(0, u) c(1,1)(u) = c(1, u)

c(2,0)(u) = c(u, 0) c(2,1)(u) = c(u, 1).

Again, each is a map [0, 1]→R, where [0,1] has parameter u.
As these examples demonstrate, the boundary of a singular k-cube should be a singular (k− 1)-chain, a

linear combination of the various faces of our k-cube. It may not be clear, however, what coefficient each
face should have. A singular cube naturally carries an orientation: for instance, the vertical faces of I2

(each of which is a singular 1-cube) in Figure 10.1 are oriented bottom-to-top, while the horizontal faces
are oriented left-to-right. Notice that the left and top faces of I2 have orientations which disagree with our
usual convention. As a consequence, we give these faces a coefficient of −1 when expressing the boundary ∂ I2.

As a matter of fact, any singular k-cube c induces a boundary orientation on ∂ c, and the orientations
naturally carried by the faces of c may not always agree with this induced orientation. We now distinguish
between positively- and negatively-oriented faces.

Definition. Consider the standard k-cube I k : [0, 1]k → Rk, for some k ≥ 1. We say that the face
I k
(i,a) : [0,1]k−1→ [0,1]k of I k is positively-oriented (as a face of I k) if

det





| | |
N(i,a)

∂
∂ u1
(I k
(i,a)) · · · ∂

∂ uk−1
(I k
(i,a))

| | |



> 0,

where N(i,a) := (−1)a+1ei ∈ Rk is the outward-pointing unit normal vector to I k
(i,a). Otherwise, I k

(i,a) is
negatively-oriented (as a face of I k). The face c(i,a) of an arbitrary singular k-cube is considered to be
positively-oriented if I k

(i,a) is so, and otherwise is negatively-oriented.

Thankfully, this is not something we have to check very often. Instead, there is a combinatorial test for the
orientations of the faces of a singular k-cube.
Exercise 10.9. Show that c(i,a) is positively-oriented if i + a is even, and is negatively-oriented if i + a is odd.

We want the coefficient of c(i,a) to be positive or negative depending on its orientation, so Exercise 10.9
tells us that the coefficient of c(i,a) should be (−1)i+a.

Definition. For any integer k ≥ 1, the boundary of a singular k-cube c : [0,1]k →R in an open subset
R of Rn is the singular (k− 1)-chain ∂ c defined by

∂ c :=
k
∑

i=1

1
∑

a=0

(−1)i+ac(i,a).

The boundary of a singular k-chain σ =
∑N

j=1 n j c j is the singular (k− 1)-chain ∂ σ defined by

∂ σ :=
N
∑

j=1

n j ∂ c j .

The boundary of a singular 0-cube is taken to be 0, as is the boundary of a singular 0-chain2.

2Recall that 0 is the empty linear combination of singular k-cubes. We treat 0 as a singular k-chain for any integer k (perhaps even
negative integers).
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Example 10.10. Consider the singular 1-cube c : [0, 1]→ R2 defined by
c(u) := (cos(2πu), sin(2πu)).

The image of c is obviously the unit circle in R2, which we think of as being boundaryless. Let’s see what our
construction does. First, c has two faces, defined by

c(1,0)(∗) = c(0) = (1, 0) and c(1,1)(∗) = c(1) = (1, 0).

So in fact the two faces of c are the same parametrized 0-surface. It then follows that

∂ c =
1
∑

i=1

1
∑

a=0

(−1)i+ac(i,a) = −c(1,0) + c(1,1) = 0,

and we see that c is indeed boundaryless.
Example 10.11. Consider the singular 2-cube c : [0,1]2→ R2 defined by

c(u1, u2) := ((u1 + 1) cos(2πu2), (u1 + 1) sin(2πu2)),

the image of which is the annulus A= {(x , y) : 1≤ x2 + y2 ≤ 4}. As does any 2-cube, c has four faces, defined
by

c(1,0)(u) = c(0, u) = (cos(2πu), sin(2πu))

c(1,1)(u) = c(1, u) = (2cos(2πu), 2 sin(2πu))

c(2,0)(u) = c(u, 0) = (u+ 1,0)

c(2,1)(u) = c(u, 1) = (u+ 1, 0).

Notice that c(2,0) = c(2,1). Draw a picture to convince yourself that this is correct. We then find that
∂ c = −c(1,0) + c(1,1) + c(2,0) − c(2,1) = c(1,1) − c(1,0).

Informally, this is telling us that ∂ c consists of the outer circle c(1,1) with the counterclockwise orientation,
plus the inner circle c(1,0) with the clockwise orientation.

10.2.2 Properties of ∂

For an open subset R of Rn, we now have two interesting sequences of maps:

Ω0(R) Ω1(R) · · · Ωn−1(R) Ωn(R) · · ·d d d d d (10.1)

and
C0(R) C1(R) · · · Cn−1(R) Cn(R) · · ·∂ ∂ ∂ ∂ ∂ . (10.2)

(The sequences continue to make sense when we place larger values in the subscripts or superscripts, but
are no longer very interesting.) In this section, we want to show that some of the properties enjoyed by the
exterior derivative d are also enjoyed by ∂ .

First, recall that if Φ: D→R is a smooth map between open subsets of Euclidean spaces, then we can
relate the sequences in (10.1) for the two regions:

Ω0(R) Ω1(R) · · · Ωn−1(R) Ωn(R) · · ·

Ω0(D) Ω1(D) · · · Ωn−1(D) Ωn(D) · · ·

d

Φ∗

d

Φ∗

d d

Φ∗ Φ∗

d

d d d d d

. (10.3)

Moreover, we know that the exterior derivative commutes with pullback, meaning that we can move through
this diagram in any order we want: Φ∗ ◦ d = d ◦Φ∗. We can also use Φ to relate the sequences in (10.2) for D
and R:

C0(R) C1(R) · · · Cn−1(R) Cn(R) · · ·

C0(D) C1(D) · · · Cn−1(D) Cn(D) · · ·

∂ ∂ ∂ ∂ ∂

Φ∗

∂

Φ∗

∂ ∂

Φ∗

∂

Φ∗

∂

. (10.4)
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By analogy with (10.3), we want an equation of the form Φ∗ ◦ ∂ = ∂ ◦Φ∗. That is, we want to say that the
boundary operator commutes with pushforward. This is indeed the case, and our proof of this fact makes use of
the following exercise.
Exercise 10.12. Let c : [0,1]k →R be a singular k-cube in an open subset R of Rn. Show that ∂ c = c∗∂ I k.
Proposition 10.13. Let Φ: D→R be a smooth map between open subsets of Euclidean spaces. Then

∂Φ∗σ = Φ∗∂ σ,

for any singular k-chain σ in D.

Proof. First, consider a singular k-cube c : [0,1]k →D in D. Then we have

∂Φ∗c = ∂ (Φ ◦ c) = (Φ ◦ c)∗∂ I k = Φ∗c∗∂ I k = Φ∗∂ c,

where the second and fourth equalities use Exercise 10.12. Next we write σ =
∑N

j=1 n j c j for some singular
k-cubes c j : [0,1]k →D. Then we have

∂Φ∗σ = ∂Φ∗

�

N
∑

j=1

n j c j

�

=
N
∑

j=1

n j ∂Φ∗c j =
N
∑

j=1

n j Φ∗∂ c j = Φ∗∂

�

N
∑

j=1

n j c j

�

= Φ∗∂ σ,

as desired.
In focusing on the commutativity of (10.3), we overlooked an even more important property of (10.1):

the nilpotence of d. We showed in Exercise 9.11 that d ◦ d = 0, and thus we know that composing consecutive
steps in (10.1) always gives the zero map. To use the vocabulary we developed around the exterior derivative,
this means that all exact forms (those which are derivatives) are closed (have derivative zero). We define
similar (if less creative) vocabulary for the boundary operator.

Definition. We say that a singular k-chain σ is a boundary if there is some singular (k + 1)-chain τ
with the property that ∂ τ= σ. We say that σ is a cycle if ∂ σ = 0.

By drawing some pictures, it’s probably not hard to convince yourself that every boundary is a cycle. In
terms of (10.2), this means that ∂ ◦ ∂ = 0, which we now prove.

Theorem 10.14: Nilpotence of ∂

Let R be an open subset of Rn, and let σ be a singular k-chain in R, for some k ≥ 0. Then ∂ (∂ σ) = 0.

Proof. We first note that if k = 0, then ∂ σ = 0 by definition, and thus ∂ σ = 0. Similarly, if k = 1, then ∂ σ is
a 0-chain, and therefore has boundary 0.

We’ll prove that if c : [0, 1]k → R is a singular k-cube, then ∂ (∂ c) = 0. The desired result then clearly
follows from the linearity of ∂ . We have

∂ (∂ c) = ∂

�

k
∑

i=1

1
∑

a=0

(−1)i+ac(i,a)

�

=
k
∑

i=1

1
∑

a=0

(−1)i+a∂ c(i,a),

with the last equality using the definition of the boundary of a singular (k−1)-chain. So we’re left to investigate
the boundary ∂ c(i,a), for some integers 1≤ i ≤ k and 0≤ a ≤ 1. According to the definition of the boundary,
we have

∂ (c(i,a)) =
k−1
∑

j=1

1
∑

b=0

(−1) j+b(c(i,a))( j,b).

Thus we find that
∂ (∂ c) =

k
∑

i=1

1
∑

a=0

k−1
∑

j=1

1
∑

b=0

(−1)i+a+ j+b(c(i,a))( j,b)

With close attention to the indices of our sums, we can do some trickery. For the sake of notation, we will
suppress the sums over 0 ≤ a, b ≤ 1 for the rest of this argument, but it should be understood that each
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expression written is summed over these variables. First, we rewrite:

∂ (∂ c) =
k
∑

i=1

k−1
∑

j=1

(−1)i+a+ j+b(c(i,a))( j,b)

=
k−1
∑

i=1

k−1
∑

j=i

(−1)i+a+ j+b(c(i,a))( j,b) +
k
∑

i=1

i−1
∑

j=1

(−1)i+a+ j+b(c(i,a))( j,b).

Next, we outsource a little bit of work.
Exercise 10.15. Show that if j < i, then (c(i,a))( j,b) = (c( j,b))(i−1,a).

We can substitute this into the last sum above:

∂ (∂ c) =
k−1
∑

i=1

k−1
∑

j=i

(−1)i+a+ j+b(c(i,a))( j,b) +
k
∑

i=1

i−1
∑

j=1

(−1)i+a+ j+b(c( j,b))(i−1,a).

Now we point out that
k
∑

i=1

i−1
∑

j=1

(−1)i+a+ j+b(c( j,b))(i−1,a) =
k−1
∑

j=1

k
∑

i= j+1

(−1)i+a+ j+b(c( j,b))(i−1,a) =
k−1
∑

j=1

k−1
∑

i= j

(−1)i+1+a+ j+b(c( j,b))(i,a),

where the second equality is obtained by replacing the variable i with i + 1. At last, we swap the roles of i
and j, as well as those of a and b, in this last sum:

k−1
∑

j=1

k−1
∑

i= j

(−1)i+1+a+ j+b(c( j,b))(i,a) =
k−1
∑

i=1

k−1
∑

j=i

(−1) j+1+b+i+a(c(i,a))( j,b).

Substituting this back into our expression for ∂ (∂ c) gives

∂ (∂ c) =
k−1
∑

i=1

k−1
∑

j=i

(−1)i+a+ j+b(c(i,a))( j,b) +
k−1
∑

i=1

k−1
∑

j=i

(−1) j+1+b+i+a(c(i,a))( j,b) = 0,

as wanted.
In some ways, the nilpotence of ∂ is more important than the fact that ∂ commutes with pullback; we

discussed the properties in this order because we wanted to delay the more tedious proof. The fact that
∂ ◦ ∂ = 0 tells us that (10.2) is a chain complex, and allows us to feed (10.2) into a gigantic machine called
homological algebra, the output of which is some information aboutR. By analogy, we call (10.1) a cochain
complex (just because d increases the index, rather than decreasing) and feed it into the same machine. The
equations

Φ∗ ◦ ∂ = ∂ ◦Φ∗ and Φ∗ ◦ d = d ◦Φ∗

then tell us that the pushforward is a chain map and the pullback is a cochain map, respectively, and
properties such as this ensure that continuous changes to R won’t affect the information given to us by the
homological algebra machine. That is, these equations somehow ensure that the data we receive from the
homological algebra machine is actually data about the topological type of R. A truly remarkable fact, known
as De Rham’s theorem, is that the homological algebra machine gives the same output for (10.1) as it does
for (10.2) (up to a certain amount of lying). We won’t have time to prove this result in our course, but a
crucial first step in the proof is Stokes’ theorem, which we take up next time.
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10.3 Day 28: Stokes’ theorem for k-chains

Goals

By the end of today’s class, we should be able to do the following.
1. State and prove Stokes’ theorem for singular chains and differential forms.
2. Interpret the exterior derivative as the natural extension of gradient, curl, or divergence.

The last few weeks may have felt a bit like aimless wandering, as we’ve defined various abstract notions
whose importance may not yet be completely clear. Today we summit our final mountaintop, from which one
can see a vast land of manifolds and homology.

To an open subset R of a Euclidean space Rn, we have now associated two important operations: the
boundary and derivative maps

∂ : Ck(R)→ Ck−1(R) and d : Ωk−1(R)→ Ωk(R).

We’ve noticed that these two operations enjoy some formally similar properties, such as nilpotence and
commutativity with some sort of composition map Φ∗ or Φ∗. Our goal today is to prove a crucial relationship
between the boundary and derivative operators, from which these similarities follow.

Theorem 10.16: Stokes’ theorem for singular k-chains

Fix integers 1≤ k ≤ n, take an open subset R of Rn, and let σ be a singular k-chain in R. Then
∫

σ

dλ=

∫

∂ σ

λ,

for any differential (k− 1) form λ on R.

In terms of the integral pairing 〈−,−〉: Ck(R)×Ωk(R)→ R defined above, Stokes’ theorem tells us that ∂
and d are adjoint (as were the pushforward and pullback), because

〈σ, dλ〉= 〈∂ σ,λ〉,

for any singular k-chain σ in R and any (k− 1)-form λ on R.

This adjunction between ∂ and d is the first in a beautiful sequence of results relating the chain complex
(C•(R),∂ ) to the cochain complex (Ω•(R), d). These results allow us to show that the geometry we’ve done
in this course can be used to compute topological information about the region R, and in fact these results
generalize to a setting which is still more abstract. Of course we’re out of time to discuss these ideas in this
course, but we will see the crucial first step which makes these lines of inquiry possible.

Here on this mountain we have climbed, our course will die; we will see the promised land only from a
distance, and will not cross over into it.

10.3.1 The proof of Stokes’ theorem

We will prove Theorem 10.16 in stages, considering progressively more general chains and forms. Because a
singular k-chain is a linear combination of singular k-cubes, we can reduce to the case of integration over a
singular k-cube. But a singular k-cube is simply a pushforward of the standard k-cube, so we consider first
the case of integration over the standard k-cube.

The standard k-cube is a singular cube in Rk, so we can write our differential k-form λ as

λ=
k
∑

j=1

f j d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k,

for some smooth functions f1, . . . , fk : Rk → R. We first consider the case where f j = 0 for all but one value of
1≤ j ≤ k. This will be our only technical result, and the machinery of differential forms will then carry us the
rest of the way.
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Lemma 10.17. Fix integers 1≤ j ≤ k and choose a smooth function f : Rk → R. Then
∫

Ik

d( f d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k) =

∫

∂ Ik

f d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k,

where I k is the standard k-cube.

Proof. Let’s start by introducing some notation. If we write I j = (1, . . . ,bj, . . . , k), then we can rewrite our
desired equation as

∫

Ik

d( f d x I j ) =

∫

∂ Ik

f d x I j . (10.5)

The left side of this equation is pretty easy to unwind. One of our first product rules for forms told us that
d( f d x I j ) = d f ∧ d x I j , and since d x i ∧ d x I j = 0 whenever i 6= j, we find that

d( f d x I j ) = d f ∧ d x I j =
∂ f
∂ x j

d x j ∧ d x I j = (−1) j−1 ∂ f
∂ x j

d x I ,

where I = (1, . . . , k). Moreover, since det I k
∗ ≡ 1 and d x I is a top-degree form on Rk, Theorem 9.21 tells us that

(I k)∗(d( f d x I j )) = (I k)∗
�

(−1) j−1 ∂ f
∂ x j

d x I

�

= (−1) j−1

�

∂ f
∂ x j
◦ I k

�

duI .

So the left side of our desired equation is given by
∫

Ik

d( f d x I j ) =

∫

[0,1]k
(I k)∗(d( f d x I j )) = (−1) j−1

∫

[0,1]k

�

∂ f
∂ x j
◦ I k

�

duI = (−1) j−1

∫

[0,1]k

∂

∂ u j
( f ◦ I k), (10.6)

where the final integral is of the type encountered in part one of the course. In the last step, we used the
chain rule to rewrite our function, as well as the definition of integration of top-degree forms on Rk. The right
side of 10.5 is somewhat more involved.

Since the boundary ∂ I k is a linear combination of the faces of I k, we start by considering the integral of
f d x I j over each of these faces. That is, we want to investigate

∫

Ik
(i,a)

f d x I j =

∫

[0,1]k−1

(I k
(i,a))

∗( f d x I j ) =

∫

[0,1]k−1

( f ◦ I k
(i,a))(I

k
(i,a))

∗(d x I j ), (10.7)

for some integers 1≤ i ≤ k and 0≤ a ≤ 1. A good place to start is a computation of (I k
(i,a))

∗(d x I j ). Notice that
this is a top-degree form on [0, 1]k−1 ⊂ Rk−1, and thus we may write

(I k
(i,a))

∗(d x I j ) = g du1 ∧ · · · ∧ duk−1,

for some smooth function g : [0,1]k−1 → R. We determine g by evaluating this form on the standard basis
∂u1

, . . . ,∂uk−1
:

(g du1 ∧ · · · ∧ duk−1)(∂u1
, . . . ,∂uk−1

) = g.

Plugging these basis vectors into (I k
(i,a))

∗(d x I j ), we find that we can write

(I k
(i,a))

∗(d x I j ) = ((I k
(i,a))

∗(d x I j )(∂u1
, . . . ,∂uk−1

)) du1 ∧ · · · ∧ duk.

Combined with (10.7), this means that
∫

Ik
(i,a)

f d x I j =

∫

[0,1]k−1

( f ◦ I k
(i,a)) (I

k
(i,a))

∗(d x I j )(∂u1
, . . . ,∂uk−1

), (10.8)

where the integral on the right is of the type seen in part one of the course. So we need to compute
(I k
(i,a))

∗(d x I j )(∂u1
, . . . ,∂uk−1

).

By definition, (I k
(i,a))

∗(d x I j )(∂u1
, . . . ,∂uk−1

) = d x I j ((I k
(i,a))∗∂u1

, . . . , (I k
(i,a))∗∂uk−1

), so let’s think about the Jaco-
bian matrix (I k

(i,a))∗. We have

I k
(i,a)(u1, . . . , uk−1) = (u1, . . . , ui−1, a

︸︷︷︸

ith entry

, ui , . . . , uk−1).
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So if 1≤ `≤ i − 1, then only the `th component of I k
(i,a) has a nonzero derivative with respect to u`, and this

derivative is 1. That is,
(I k
(i,a))∗∂u` = ∂x` , if 1≤ `≤ i − 1.

For i ≤ `≤ k− 1, it is the (`+ 1)st component of I k
(i,a) which varies with respect to u`, and we find that

(I k
(i,a))∗∂u` = ∂x`+1

, if i ≤ `≤ k− 1.

Putting things together,

(I k
(i,a))

∗(d x I j )(∂u1
, . . . ,∂uk−1

) = d x I j ((I k
(i,a))∗∂u1

, . . . , (I k
(i,a))∗∂uk−1

) = d x I j (∂x1
, . . . ,c∂xi

, . . . ,∂xk
)

=
§

1, if i = j
0, if i 6= j =: δi j .

This last notation is called the Kronecker delta, and is defined by the equation given here. It’s just a useful bit
of notation.

Substituting this computation into (10.8), leads us to
∫

Ik
(i,a)

f d x I j = δi j

∫

[0,1]k−1

f ◦ I k
(i,a). (10.9)

At last we can compute the right side of (10.5). We have
∫

∂ Ik

f d x I j =
k
∑

i=1

1
∑

a=0

(−1)i+a

 

∫

Ik
(i,a)

f d x I j

!

=
k
∑

i=1

1
∑

a=0

(−1)i+a

�

δi j

∫

[0,1]k−1

f ◦ I k
(i,a)

�

= (−1) j
1
∑

a=0

(−1)a
�

∫

[0,1]k−1

f ◦ I k
( j,a)

�

= (−1) j+1

∫

[0,1]k−1

( f ◦ I k
( j,1) − f ◦ I k

( j,0)).

(10.10)

We emphasize once again that this last integral is of the type seen in part one of the course; namely, it’s an
integral of a function.

Finally, it’s time to compare the left and right hand sides of our desired equation. We expressed the left
side as an integral over [0,1]k in (10.6). Using Fubini’s theorem, we have

∫

Ik

d( f d x I j ) = (−1) j−1

∫

[0,1]k

∂

∂ u j
( f ◦ I k) = (−1) j−1

∫

[0,1]k−1

�

∫

[0,1]

∂

∂ u j
( f ◦ I k)

�

, (10.11)

where the integral over [0, 1] uses the variable u j , and the outer integral uses u1, . . . ,Òu j , . . . , uk. With all the
indices we’ve had to track, this entire proof probably feels pretty technical; but here comes the key technical
step: we apply the single-variable Fundamental Theorem of Integral Calculus to the integral over [0, 1] to see
that

∫

[0,1]

∂

∂ u j
( f ◦ I k) = ( f ◦ I k)(u1, . . . ,

jth entry
︷︸︸︷

1 , . . . , uk)− ( f ◦ I k)(u1, . . . ,

jth entry
︷︸︸︷

0 , . . . , uk)

= ( f ◦ I k
( j,1))(u1, . . . ,Òu j , . . . , uk)− ( f ◦ I k

( j,0))(u1, . . . ,Òu j , . . . , uk).

We’re almost there. Substituting this last observation into (10.11), we find that
∫

Ik

d( f d x I j ) = (−1) j−1

∫

[0,1]k−1

�

f ◦ I k
( j,1) − f ◦ I k

( j,0)

�

=

∫

∂ Ik

f d x I j ,

where this last equality uses (10.10), as well as the fact that (−1) j−1 = (−1) j+1. But this is precisely our
desired equation! So Stokes’ theorem holds in this special case.

With this basic version of Stokes’ theorem in hand, we obtain the result for more general forms by using
some basic properties of forms.
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Lemma 10.18. For any k ≥ 1 and any differential (k− 1)-form λ on Rk,
∫

Ik

dλ=

∫

∂ Ik

λ,

where I k is the standard k-cube.

Proof. Because λ is a (k− 1)-form on Rk, we can write

λ=
k
∑

j=1

f j d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k,

for some smooth functions f1, . . . , fk : Rk → R. Then we find that
∫

Ik

dλ=

∫

Ik

d

�

k
∑

j=1

f j d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k

�

=

∫

Ik

�

k
∑

j=1

d( f j d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k)

�

=
k
∑

j=1

�∫

Ik

d( f j d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k)

�

=
k
∑

j=1

�∫

∂ Ik

f j d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k

�

=

∫

∂ Ik

�

k
∑

j=1

f j d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x k

�

=

∫

∂ Ik

λ,

with the antepenultimate equality following from Lemma 10.17.
So we now know that Stokes’ theorem holds for any (k− 1)-form λ, provided the chain over which we’re

integrating is the standard k-cube. Let’s enhance this to an arbitrary singular k-cube.
Lemma 10.19. Fix integers 1≤ k ≤ n, take an open subset R of Rn, and let c : [0, 1]k →R be a singular k-cube
in R. Then

∫

c

dλ=

∫

∂ c

λ,

for any differential (k− 1)-form λ on R.

Proof. Recall that we can realize the k-cube c as the pushforward under the map c : [0,1]k →R of the standard
k-cube I k : [0,1]k → [0, 1]k. Then, using Theorem 10.6, we find that

∫

c

dλ=

∫

c∗ Ik

dλ=

∫

Ik

c∗(dλ) =

∫

Ik

d(c∗λ)

=

∫

∂ Ik

c∗λ=

∫

c∗∂ Ik

λ=

∫

∂ c

λ.

This computation uses Lemma 10.18 in its fourth step, in addition to using the fact that pushforward commutes
with the boundary operator.

Finally, obtaining Theorem 10.16 from Lemma 10.19 simply uses the linearity of integration over chains.
Proof of Theorem 10.16. Since σ is a singular k-chain, we can write

σ =
N
∑

j=1

n j c j

for some finite collection of integers n j ∈ Z and singular k-cubes c j . Then, using Lemma 10.19 and the
definition of integration over chains, we have

∫

σ

dλ=
N
∑

j=1

n j

∫

c j

dλ=
N
∑

j=1

n j

∫

∂ c j

λ=

∫

∂ σ

λ,

as desired.
Notice that Lemma 10.17 was the only step with any technical content, where we used the single-variable

FTIC. The remaining steps were routine applications of standard properties for differential forms and singular
chains.
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10.3.2 An example

Let’s see Stokes’ theorem in action.
Example 10.20. Consider the upper hemisphere S ⊂ R4 of the unit 3-sphere S3 in R4. That is,

S := {(x1, x2, x3, x4) : x2
1 + x2

2 + x2
3 + x2

4 = 1 and x4 ≥ 0}.

Suppose we have a singular 3-cube c : [0,1]3→ R4 which is injective on (0, 1)3, and whose image is S. Suppose
further that

det





| | | |
N ∂ c

∂ u1

∂ c
∂ u2

∂ c
∂ u3

| | | |



> 0,

where N is the outward-pointing unit normal vector to S in R4. Let’s compute
∫

S η :=
∫

c
η, where

η :=
4
∑

j=1

(1− x j) d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x4.

At this point, it’s hard to be too hopeful about applying Stokes’ theorem, since η is not presented as a derivative
and S is not presented as a boundary. Notice, however, that

dη=
4
∑

j=1

∂

∂ x j
(1− x j) d x j ∧ d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x4

=
4
∑

j=1

−1 d x j ∧ d x1 ∧ · · · ∧dd x j ∧ · · · ∧ d x4

=
4
∑

j=1

(−1) j d x I = 0.

So if we could realize S as (part of) a boundary in R4, then we could trade this boundary in for a derivative,
which would kill the form we’re integrating. For instance, consider the region

W := {(x1, x2, x3, x4) : x2
1 + x2

2 + x2
3 + x2

4 ≤ 1 and x4 ≥ 0}.

As a region in R4, we can think of the boundary W as consisting of two pieces:

∂W = {(x1, x2, x3, x4) : x2
1 + x2

2 + x2
3 + x2

4 = 1 and x4 ≥ 0}
∪ {(x1, x2, x3, x4) : x2

1 + x2
2 + x2

3 + x2
4 ≤ 1 and x4 = 0}.

The first of these pieces is our hemisphere S, while the second is the 3-ball in R3 of radius 1, included into R4

in the obvious way. We’ll call this second piece B. Of course we’re being a bit sloppy here, since we haven’t
expressed any of our regions or hypersurfaces as parametrized k-surfaces, but the point is that this general
Stokes’ theorem continues to work as expected. Namely, we have

∫

W
dη=

∫

∂W
η=

∫

S
η+

∫

B
η,

with the hypersurfaces on the right carrying the boundary orientation. Since dη= 0, the integral on the left
is 0, so we have

∫

S
η= −

∫

B
η,

with S oriented by an outward-pointing normal vector (as we required above), and B oriented by −∂x4
. Now

on B we have x4 ≡ 0 and d x4 ≡ 0, meaning that

η|B = d x1 ∧ d x2 ∧ d x3.

Consider the singular 3-cube cB : [0,1]3→ R4 defined by

cB(u1, u2, u3) := (u1 sin(πu2) cos(2πu3), u1 sin(πu2) sin(2πu3), u1 cos(πu2), 0).
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Inspired by spherical coordinates, this 3-cube is injective on the interior of its parameter domain, and its
image is B. Moreover, since

det





| | | |
−∂x4

∂ cB
∂ u1

∂ cB
∂ u2

∂ cB
∂ u3

| | | |





= det







0 sin(πu2) cos(2πu3) πu1 cos(πu2) cos(2πu3) −2πu1 sin(πu2) sin(2πu3)
0 sin(πu2) sin(2πu3) πu1 cos(πu2) sin(2πu3) 2πu1 sin(πu2) cos(2πu3)
0 cos(πu2) −πu1 sin(πu2) 0
−1 0 0 0







= 2π2u2
1 sin(πu2)> 0,

for all (u1, u2, u3)> 0, we see that cB is positively-oriented as a face of ∂W. So we can integrate η over B by
integrating c∗Bη over [0, 1]3. Let’s consider c∗Bη.

First, notice that c∗Bη is a top-degree form on [0, 1]3. This means that we can write
c∗Bη= (c

∗
Bη)(∂u1

,∂u2
,∂u3
) du1 ∧ du2 ∧ du3,

so we need to compute (c∗Bη)(∂u1
,∂u2

,∂u3
). Since η|B = d x1 ∧ d x2 ∧ d x3, we see that

(c∗Bη)(∂u1
,∂u2

,∂u3
) = (d x1 ∧ d x2 ∧ d x3)((cB)∗∂u1

, (cB)∗∂u2
, (cB)∗∂u3

)

= det





| | |
(cB)∗∂u1

(cB)∗∂u2
(cB)∗∂u3

| | |





(1,2,3)

= det





sin(πu2) cos(2πu3) πu1 cos(πu2) cos(2πu3) −2πu1 sin(πu2) sin(2πu3)
sin(πu2) sin(2πu3) πu1 cos(πu2) sin(2πu3) 2πu1 sin(πu2) cos(2πu3)

cos(πu2) −πu1 sin(πu2) 0





= 2π2u2
1 sin(πu2).

So at last we have
∫

B
η=

∫

cB

η=

∫

[0,1]3
c∗Bη=

∫

[0,1]3
2π2u2

1 sin(πu2) du1 ∧ du2 ∧ du3 =

∫

[0,1]3
2π2u2

1 sin(πu2),

where the last integral is of the type seen in part one of the course. Hopefully we recognize this last integral
as computing the volume of the unit 3-ball in R3. Whether we do or not, we can verify that this last integral
gives us 4π/3, and thus

∫

S
η= −

∫

B
η= −

4π
3

.

Whew! Hopefully we’ve made Stokes proud.

10.3.3 Reinterpreting the exterior derivative

Recall that in Sections 5.3.3 and 6.3.3 we used an FTIC to give the derivatives curl and div some geometric
meaning. We can now use Stokes’ theorem to reinterpret the exterior derivative of a differential k-form. If
one has the perspective that a differential form is "a thing to be integrated," then this is perhaps the correct
definition of the derivative.

Throughout this section, we’ll suppose that we have a differential k-form λ on Rn, but that we don’t know
how to compute the (k+1)-form dλ. We will assume Stokes’ theorem, and compute dλ using this assumption.

Crucial to our earlier discussions was the fact that if f : R→ R is a continuous function, then

lim
r→0

�

1
2r

∫ x0+r

x0−r

f (x) d x

�

= f (x0) (10.12)

for any point x0 ∈ R. You can prove this fact using the usual Fundamental Theorem of Integral Calculus, but
we claim that this is an equation which makes good intuitive sense. The expression in parentheses on the
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left computes the average value of f over the interval [x0 − r, x0 + r]; as r shrinks to 0, so that this interval
shrinks down to the point {x0}, the average value of f over the interval should tend towards f (x0), provided
f is continuous.

A strange way of interpreting the above discussion is as follows: a continuous function f : R → R is
completely determined by its average values of the various closed intervals of R. That is, if we know the
average value of f over every closed interval I of nonzero length, then we can use (10.12) to determine every
value of f . We’ll use this interpretation to compute dλ: using Stokes’ theorem and integration of λ, we know
the "average value" of dλ over any singular (k+ 1)-chain in Rn, and we can use these values to determine dλ.

The differential form dλ that we’re trying to compute is a (k+ 1)-form, and thus may be written as

dλ=
∑

I

fI d x I ,

for some smooth functions fI : Rn→ R, where the sum is taken over standard multi-indices of length k+ 1.
Our job, then, is to determine the functions fI . Notice that if I = (i1, . . . , ik+1), then

fI = dλ(∂i1 , . . . ,∂ik+1
),

since d x J (∂i1 , . . . ,∂ik+1
) = 0 if J 6= I . Here we’re writing ∂ j for the coordinate vector field ∂x j

. So we can
determine fI (p) by computing (dλ)p(∂i1 , . . . ,∂ik+1

), for any point p ∈ Rn. We claim that we can approximate
the value (dλ)p(∂i1 , . . . ,∂ik+1

) with the average value of dλ over a singular (k+ 1)-cube whose (small) image
contains p. For each r ∈ R we define a singular (k+ 1)-cube cr : [0,1]k+1→ Rn by

cr(u1, . . . , uk+1) := p+ r u1 ∂i1 + · · ·+ r uk+1 ∂ik+1
.

The image of cr is the (k + 1)-dimensional parallelotope based at p and spanned by r ∂i1 , . . . , r ∂ik+1
, and if

|r|> 0 is very small, we expect fI (p) to be approximated by the average value of dλ over cr . That is, we expect

fI (p)≈
1

vol(cr)

∫

cr

dλ=
1

rk+1

∫

cr

dλ,

where vol(cr) is the (k + 1)-dimensional volume of cr , equal to rk+1 because the vectors ∂i1 , . . . ,∂ik+1
are

orthonormal in Rn.

We can now invoke Stokes’ theorem to rewrite the integral of dλ (the form we are trying to define) over
cr as the integral of λ over ∂ cr . We thus find that

fI (p) = lim
r→0

�

1
rk+1

∫

∂ cr

λ

�

.

From here, we may extend by linearity to find that if p is any point in Rn and v1, . . . ,vk+1 is any vector based
at p, then we can define a singular (k+ 1)-cube

Vr(u1, . . . , uk+1) := p+ r u1 v1 + · · ·+ r uk+1 vk+1

in Rn for any r ∈ R, and we will have

(dλ)p(v1, . . . ,vk+1) = lim
r→0

�

1
rk+1

∫

∂ Vr

λ

�

. (10.13)

For those who define differential forms as things which are to be integrated, (10.13) is probably the correct
way to define the derivative of a differential form. However we define the derivative, we want Stokes’ theorem
to hold, and (10.13) ensures that this result holds on an infinitesimal level.

Just in case you find (10.13) to be less-than-natural, let’s consider the case k = 0 — that is, the case of a
smooth function f on Rn. In this case, d f accepts as input a point p and a vector v. Equation 10.13 tells us to
consider the integral of f over the boundary of the singular 1-cube

Vr(u) = p+ r uv.
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Notice that ∂ Vr consists of two faces:

(∂ Vr)(1,1) : ∗ 7→ p+ r v and (∂ Vr)(1,0) : ∗ 7→ p,

the first with positive coefficient and the second with negative. We thus find that
∫

∂ Vr

f =

∫

(∂ Vr )(1,1)

f −
∫

(∂ Vr )(1,0)

f = f (p+ r v)− f (p).

So (10.13) tells us that
d fp(v) = lim

r→0

�

1
r

∫

∂ Vr

f

�

= lim
r→0

f (p+ r v)− f (p)
r

.

This matches the first definition we saw for directional derivatives, and suggests that (10.13) generalizes the
familiar notion of derivative.
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