Math 2552
Semester Outline

Here’s a high-level outline of what we learned this semester. It’s not exactly a study guide,
just a way to organize your thoughts about what we did.

1 Introduction to differential equations

Why do we study differential equations?

Ordinary versus partial differential equations; linear versus non-linear; autonomous
ODEs

Order of an ODE, direction fields for first-order ODEs, initial value problems

Goal for the course: develop a basic library of ODEs we can solve exactly, and hint at
a strategy for ODEs we can’t solve.

2 First order ODEs

Separable ODEs

Integrating factors for linear, first-order ODEs

Modeling (lots of salt tanks)

Structure of the solution set for a linear ODE, and for homogeneous linear ODEs.
Existence and uniqueness for solutions to IVPs

Autonomous first-order ODEs: phase portraits, stability of solutions, and applications
to population dynamics.

3 Systems of first order linear ODEs with constant coefficients

Fundamental solution sets for homogeneous systems
Constructing fundamental solution sets via eigensystems:
— distinct real eigenvalues
— distinct complex eigenvalues
— repeated eigenvalues
Phase portraits for 2D systems
Shifted linear systems (i.e., X' = A(x — a))
Applications (e.g. systems of salt tanks)

4 Second order ODEs

Converting a second order ODE to a 2D system of first order ODEs.

Solving second order linear homogeneous ODEs with constant coefficients. Three cases:
— distinct real eigenvalues
— distinct complex eigenvalues



— repeated eigenvalues

e Free vibrations (i.e., spring-mass systems with no external forcing)

e Non-homogeneous second order linear ODEs with constant coefficients via the method
of undetermined coefficients.

e Non-homogeneous second order linear ODEs via variation of parameters. (Here the
coefficients might not be constant.)

e Forced vibrations (i.e., spring-mass systems with external forcing)

e Resonance, frequency-response function, gain.

Using the Laplace transform to solve IVPs

e Outline of the strategy: £ turns IVPs into algebra problems, and £~ turns algebraic
solutions into IVP solutions.

Computing the Laplace transform from the definition.

Various formulae for £: how it treats derivatives, time-shifts, multiplication by e, etc.
Skills for computing £~! — especially partial fractions.

Strange forcing terms: discontinuous functions, periodic functions, impulse functions.
Convolution and impulse response. Use these to break an IVP solution into a forced
response and a free response.

Linearization

e Autonomous systems and critical points.

e Linearizing autonomous systems at their critical points.

e When does the stability of the linear system’s CP match the stability as a CP of the
original system?

e For 2D linear systems with constant coefficients, determining stability based on trace
and determinant.

e Applications: competing species systems and predator-prey systems.

Numerical methods

Euler’s method for approximating solutions to first-order ODEs.

Accuracy of Euler’s method: computing bounds for local truncation error and global
truncation error.

Improved Euler method.

Runge-Kutta method.

Applying any of these methods to first-order systems, or to higher-order ODEs.
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