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1. Introduction

Recall that the last talk in this series developed a version of Legendrian contact homology for Legendrian
knots in R3. Specifically, that talk presented the differential graded algebra defined by Chekanov in [6],
following the exposition of [8]. A knot K ⊂ R3 was said to be Legendrian if it was everywhere tangent to
the contact structure ξ0 = kerα0, where α0 was the contact form dz− ydx. Given a Legendrian knot K, the
Chekanov-Eliashberg DGA was then generated by the double points of π(K), where π : R3 → R2 was the
xy-projection. The differential on this DGA was then defined by counting certain polygonal maps between
the double points.

Though we did not emphasize this then, Legendrian contact homology is supposed to be a sort of Morse
homology for an action functional. Consider the functional defined on paths in R3 by

A(ψ) :=

∫
ψ

α0.

The action-minimizing paths of this functional will have their tangent vectors in the kernel of dα0, and will
thus be directed by the Reeb vector field of α0, defined by the equations

ιRα0
α0 ≡ 1 and ιRα0

dα0 ≡ 0.

We quickly see that the Reeb vector field for α0 = dz − ydx is ∂z, so the action-minimizing paths are
vertical lines. Thus the double points of π(K) represent those pairs of points on K which are connected
by an action-minimizing path. In this way the generators of our DGA correspond to critical points of the
functional A, and the differential then counts curves connecting one critical point to another (of course we’re
sweeping quite a lot under the rug here).

Our goal today will be to investigate these same ideas in the absence of a Legendrian subspace. That
is, instead of a DGA generated by Reeb chords — the action-minimizing paths connecting distinct points
on K — we will consider a DGA generated by Reeb orbits. Certainly (R3, ξ0) has no such orbits, but the
Weinstein conjecture encourages us to expect Reeb orbits to exist for closed contact manifolds.

We plan to construct contact homology under ideal but very restrictive conditions. The primary reference
for this talk is [3], and the interested reader would likely be better served by reading those notes. Given a
contact manifold and some auxiliary data, we will construct a DGA whose homology will not depend on the
associated data. As mentioned above, the algebra will be generated by a collection of Reeb orbits, and, as
with any Floer-type theory, the differential will involve a count of J-holomorphic curves.

Throughout, we take (M2n−1, ξ) to be a fixed compact contact manifold. Further, we assume that ξ is
co-oriented, and denote by α a global contact form for ξ.

2. The graded algebra

2.1. Critical points. As with any Floer homology, contact homology mimics Morse homology, with a
functional playing the role usually played by a Morse function. For contact homology, the functional of
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interest is the action functional A : C∞(S1,M)→ R defined by

A(γ) :=

∫
γ

α,

where α is the contact form chosen above. If we hope to perform a Morse-type analysis on this functional,
we should identify its critical points. Recall that a Reeb orbit is an orbit γ : S1 → M for which ιγ̇dα = 0.
A least action principle then tells us that γ ∈ C∞(S1,M) is a critical point of A if and only if γ is a closed
Reeb orbit of (M, kerα). We care especially about non-degenerate critical points of A; we should determine
what non-degeneracy means for closed Reeb orbits. Say γ : R/TZ→M is a closed Reeb orbit and let

φt : M →M

be the time t-Reeb flow. From this flow we obtain the linearized return map

Ψγ := d(φT )γ(0)|ξγ(0) : ξγ(0) → ξγ(0).

The Reeb flow preserves the contact structure ξ, as well as its symplectic form dα, so the return map is
a symplectic linear map. One can show that γ is non-degenerate as a critical point of A if and only if
the linearized return map Ψγ does not have 1 as an eigenvalue, and we will call orbits with this property
nondegenerate Reeb orbits.

In order to mimic Morse theory, we want all critical points of our action functional to be non-degenerate.
Thankfully, we have the following:

Lemma 1. For any contact structure ξ on M , there exists a contact form α for ξ such that all closed orbits
of Rα are non-degenerate.

This is great in that it allows us to do Morse theory, but it comes at a cost. If we have a particularly
nice contact form α (say, with lots of symmetry), we might be able to reasonably compute its Reeb flows.
But by perturbing the original form we break this symmetry, perhaps making the Reeb flows unreasonable
to compute. In [2], Bourgeois develops some alternative techniques for computing contact homology (via
a different chain complex) that relaxes the non-degeneracy requirements to Morse-Bott-type requirements.
We will not pursue these ideas here.

We will say that a Reeb orbit γ : R/TZ → M is simple if γ has minimal period among all Reeb orbits
with image γ(R/TZ). If γ : R/TZ→M is simple, we will call the Reeb orbit

γk : R/kTZ→M : t 7→ γ(t)

the k-fold iterate or k-fold multiple cover of γ. For each simple closed Reeb orbit γ we also fix a marker
xγ = γ(t0). These markers will not affect the construction of our algebra, but will matter for our differential.

2.2. An index. The graded algebra of interest to us will be generated by non-degenerate, closed Reeb
orbits, but not all such orbits. Defining the differential on our algebra will require a more narrow set of
generators, and the additional criteria are most easily expressed via a condition on the grading. That is, we
are going to define a grading on the closed Reeb orbits, and then use this grading to determine which orbits
are admissible as generators of our algebra.

Suppose γ : R/TZ→M is a non-degenerate, closed Reeb orbit, and fix a trivialization of ξ along γ. With
respect to this trivialization, the linearized Reeb flow dφt : ξγ(0) → ξγ(t) induces a path

Ψγ : [0, T ]→ Sp(2n− 2).

Notice that we previously used Ψγ to denote the return map that is now denoted by Ψγ(T ). Certainly
Ψγ(0) = I, and since γ is non-degenerate, det(Ψγ(T )− I) 6= 0. We consider the t-values for which degener-
ation occurs, which we call crossings:

Crossγ := {t ∈ [0, T ]|det(Ψγ(t)− I) = 0}.
At each crossing t ∈ [0, T ] we let Et := ker(Ψγ(t) − I) and consider the quadratic form Γ(Ψγ , t) : Et → R
defined by

v 7→ dα(v, Ψ̇γ(t)v).
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We call a crossing t ∈ Crossγ regular if Γ(Ψγ , t) is non-degenerate. If all crossings of the path Ψγ are regular,
we define the Conley-Zehnder index of Ψγ by

(1) µCZ(Ψγ) =
1

2
sign Γ(Ψγ , 0) +

∑
t∈Crossγ \{0}

sign Γ(Ψγ , t).

We can extend our definition of the Conley-Zehnder index to all paths of symplectic matrices with the help
of the following lemma of Robbin and Salamon [12]:

Lemma 2. If Ψ,Ψ′ : [0, T ]→ Sp(2n−2) are homotopic with fixed endpoints and have regular crossings, then
µCZ(Ψ) = µCZ(Ψ′).

For an arbitrary path Ψ: [0, T ]→ Sp(2n− 2) with Ψ(0) = I and det(Ψ(T )− I) 6= 0, we may then choose
Ψ′ to be fixed-endpoint-homotopic to Ψ and have regular crossings, and define µCZ(Ψ) := µCZ(Ψ′).

As with the Maslov index, the Conley-Zehnder index could instead be defined as the degree of a loop in
S1, using a continuous extension of the determinant map U(n)→ S1 to all of Sp(2n). For an exposition of
this approach, and to see that the two definitions are equivalent, consult [12] or [13].

Of course the Conley-Zehnder index of a closed Reeb orbit γ is not exactly well-defined, since it depends
on the choice of a trivialization of ξ along γ. Its parity, however, is well-defined, and in fact can be deduced
from the linearized return map via the following formula:

(2) (−1)µCZ(γ) = (−1)n−1 sign det(Ψγ(T )− I).

See section 1.2 of [7]. We call a Reeb orbit even (resp. odd) if its Conley-Zehnder index is even (resp. odd).

2.3. An example. Suppose a, b > 0 are positive real numbers, with a/b irrational, and consider

M =

{
(z1, z2)

∣∣∣∣π|z1|2

a
+
π|z2|2

b
= 1

}
⊂ C2,

the boundary of an ellipsoid. Writing zj = xj + iyj for j = 1, 2, we give M the contact form

α =
1

2

2∑
j=1

(xjdyj − yjdxj).

The Reeb vector field for this form is easily seen to be

R =
2π

a
∂θ1 +

2π

b
∂θ2 ,

where ∂θj = xj∂yj − yj∂xj for j = 1, 2. Because a/b is irrational, there are precisely two closed, simple Reeb
orbits. Both are circles, and we consider now the closed Reeb orbit parametrized by

γ(t) = (
√
a/π exp(2πit/a), 0), for t ∈ [0, a].

The 2-dimensional contact plane ξγ(t) is spanned by ∂x2
and ∂y2 , for all t ∈ [0, a], and this provides a

trivialization of ξ along γ. The linearized Reeb flow dφt : ξγ(0) → ξγ(t) is given by rotation through an angle
of 2πt/b, which has an eigenvalue of 1 precisely when t is an integer multiple of b. So

Crossγ = {kb|k ∈ Z, kb ∈ [0, a]},
and thus |Crossγ | = bab c + 1. Notice that because a/b is irrational, a is not a crossing, so γ is a non-
degenerate closed Reeb orbit, as are all of its iterates. The next step in computing the Conley-Zehnder index
of γ requires an investigation of the quadratic forms Γ(Ψγ , t), where t ∈ Crossγ . To this end, we note that
for t ∈ Crossγ we have Ψγ(t) = I and

Ψ̇γ(t) =
2π

b

[
− sin(2πt/b) − cos(2πt/b)
cos(2πt/b) − sin(2πt/b)

]
=

2π

b

[
0 −1
1 0

]
=

2π

b
J0.

Now since dα =
∑2
j=1 dxj ∧ dyj , we have dα = dx2 ∧ dy2 on ξγ(t), so

dα(v, Ψ̇γ(t)v) =
2π

b
(dx2 ∧ dy2)(v, J0v) =

2π

b
‖v‖2
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for every v ∈ ξγ(t) = ker(Ψγ(t)− I). In particular this means that Γ(Ψγ , t) has signature 2 for all crossings

t ∈ Crossγ , and we conclude that the Conley-Zehnder index of γ with respect to our chosen trivialization1 is

µCZ(Ψγ) = 1 +
∑

t∈Crossγ \{0}

2 = 2
⌊a
b

⌋
+ 1.

This example indicates the rough idea one should have for the Conley-Zehnder index, at least in dimension
three: given a non-degenerate Reeb orbit γ and a trivialization of ξ along this orbit, the Conley-Zehnder
index is a measurement of the rotation of the linearized Reeb flow around γ with respect to the trivialization.

2.4. A word about elliptic/hyperbolic orbits. We momentarily restrict our attention to the n = 2
case, so that M is a 3-dimensional manifold. Given a non-degenerate closed Reeb orbit γ : R/TZ → M ,
its linearized return map Ψγ : ξγ(0) → ξγ(0) is an automorphism of the two-dimensional symplectic vector
space (ξγ(0), dα). Because symplectic maps have determinant 1 and have the property that their eigenvalues

appear in pairs λ, λ−1, we may choose λ ∈ C \ {0} so that λ and λ−1 are the eigenvalues of Ψγ . Moreover,
because γ is non-degenerate, λ 6= 1. We now have three cases: either λ 6∈ R, λ > 0, or λ < 0. In the first
case, Ψγ has distinct eigenvalues eiθ, e−iθ, so Ψγ is conjugate to a rotation in ξγ(0) through an angle of ±θ.
In this case we say that γ is an elliptic Reeb orbit. We may use equation (2) to determine the parity of the
Conley-Zehnder index of γ. We have

(−1)µCZ(γ) = (−1)1 sign(2− 2 cos θ) = −1,

so µCZ(γ) is odd for all elliptic Reeb orbits γ. Notice that if all iterates of γ are to be non-degenerate, then
2π/θ must be irrational.

Next we suppose that λ ∈ R. If λ = −1, the fact that Ψγ is symplectic tells us that Ψγ = −I, in
which case γ2 is degenerate. Since we are operating under the assumption that no closed Reeb orbits are
degenerate, this cannot happen. So we have λ 6= −1, meaning that Ψγ has distinct eigenvalues λ, λ−1, and
thus ξγ(0) admits a basis {v1, v2} with respect to which we may write

Ψγ(T ) =

[
λ 0
0 λ−1

]
.

We lose no generality by assuming that |λ| < 1, in which case v1 and v2 span stable and unstable subspaces
of ξγ(0), respectively. We call all Reeb orbits γ for which Ψγ has only real eigenvalues hyperbolic; we prepend
the adjective positive or negative in case λ > 0 or λ < 0. For the parity of the Conley-Zehnder index we
have

(−1)µCZ(γ) = (−1)1 sign((λ− 1)(λ−1 − 1)) = sign(λ),

since |λ| < 1. So we see that µCZ(γ) is even if γ is positive hyperbolic and odd if γ is negative hyperbolic.

Suppose γ is negative hyperbolic, and that v ∈ ξγ(0) is an eigenvector of the linearized return map Ψγ

with eigenvalue −1 < λ < 0. Because |λ| < 1, the iterates Ψk
γv tend to 0 as k tends to infinity, and perhaps

we think of the line spanned by v as a stable subspace of ξγ(0). Notice, however, that the orientations of

Ψ2k
γ v and Ψ2k+1

γ v disagree, indicating that we might run into trouble if we attempt a Morse theory which
uses both even and odd iterates of γ as generators. We will soon write down a condition that excludes Reeb
orbits which create these kinds of problems.

2.5. A grading. For reasons that will remain opaque, we alter the Conley-Zehnder index to produce a
grading on the closed Reeb orbits. We define

|γ| := µCZ(γ) + n− 3.

As mentioned above, the definition of the Conley-Zehnder index requires that we choose a trivialization for
ξ along γ, so our grading is not entirely well-defined. As with the Conley-Zehnder index, however, the parity
is well-defined. This allows us to give a simple test for the admissibility of a closed Reeb orbit γ. Let γs be
the simple closed Reeb orbit underlying γ. We say that γ is good if the parities of |γ| and |γs| agree, and

1As it happens, computing the contact homology of M would require a different trivialization, and thus produce a different

Conley-Zehnder index.
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say that γ is bad otherwise. Notice that dimension three, the bad Reeb orbits are precisely the even covers
of negative hyperbolic orbits — the orbits we suspected would cause problems.

2.6. A Novikov ring. Suppose γ = ∂Σγ and trivialize ξ on Σγ to obtain µCZ(γ; Σγ), the Conley-Zehnder
index of γ with respect to this spanning surface. If we have [A] ∈ H2(M,Z), we can instead trivialize ξ on
the connected sum Σγ]A to obtain a different Conley-Zehnder index µCZ(γ; Σγ]A), and these indices are
related by the first Chern class of ξ:

(3) µCZ(γ; Σγ]A) = µCZ(γ; Σγ) + 2〈c1(ξ), [A]〉.

A proof of the index formula (3) can be found in Appendix A of [11]. This formula captures some of the
ambiguity of the grading we have chosen for the generators of our algebra, and it will inspire a grading on
the coefficient ring of our algebra.

The coefficient ring of our algebra will be a group ring of H2(M,Z). The index formula (3) suggests the
grading

(4) |A| = −2〈c1(ξ), [A]〉

on H2(M,Z), and we will take the group ring Q[H2(M,Z)] as our coefficient ring. The elements of
Q[H2(M,Z)] will be written as

k∑
i=1

qie
Ai ,

with qi ∈ Q and Ai ∈ H2(M,Z). For further discussion of why this should be the coefficient ring of our
graded algebra, see section 9.2 of [10].

Finally, we let A be the graded, unital, supercommutative algebra freely generated by all good closed
Reeb orbits over the group ring Q[H2(M,Z)]. Supercommutativity means that γ1γ2 = (−1)|γ1||γ2|γ2γ1 for
all generators γ1, γ2.

3. The differential

As with any Floer-type homology theory, the differential we define on the graded algebra A will involve
counting J-holomorphic curves of special interest to us. Naturally, performing such a count will require the
relevant moduli spaces to be compact and fairly regular, and the differential will consider the sizes of the
one-dimensional moduli spaces, modulo an R-action.

3.1. The J-holomorphic curves. The J-holomorphic curves of interest will land in the symplectization

(R×M,d(etα))

of the co-oriented contact manifold (M2n−1, kerα). The almost complex structure we consider on the sym-
plectization will arise from a complex structure on the contact distribution ξ. If J : ξ → ξ is a complex
structure compatible with α (meaning that dα(J ·, J ·) = dα and dα(·, J ·) > 0), then we can uniquely extend
J to an almost complex structure on the symplectization by declaring that J∂t = Rα (and thus JRα = −∂t),
and J will immediately be compatible with ω = d(etα). From now on we assume J to be fixed.

The J-holomorphic curves we consider will be of the form u : (Σ, j) → (R × M,J), with Σ = S2 \
{y+, y1, . . . , ys}, where y+, y1, . . . , ys ∈ S2 are some selected points and j is some complex structure on S2.
Moreover, each puncture in Σ will have an associated asymptotic marker. For a puncture p, an asymptotic
marker is an element of (TpS

2 \ {0})/R+; in polar coordinates (ρ, θ) about the puncture we may identify an
asymptotic marker with a ray {θ = θ0}.

Specifically, we want to select closed Reeb orbits γ+, γ1, . . . , γs of period T+, T1, . . . , Ts, respectively, and
ask u to be a j-J-holomorphic curve that converges to vertical cylinders over these closed Reeb orbits near
the punctures. We can write u : Σ → R ×M as a pair of maps a : Σ → R and ũ : Σ → M . This allows us
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y+

y1 y2 y3

u

γ+

γ1 γ2
γ3

t

Figure 1. A J-holomorphic curve in M(γ+; γ1, γ2, γ3).

to express the behavior we expect near punctures as limits: With polar coordinates (ρ, θ) near a puncture
p ∈ S2, we want

(5) lim
ρ→0

a(ρ, θ) =

{
+∞, p = y+

−∞, p = yi
, and lim

ρ→0
ũ(ρ, θ) =

{
γ+(−T+θ/2π), p = y+

γi(Tiθ/2π), p = yi
.

In addition to requiring u to take the punctures to cylinders over Reeb chords, we also require that u preserves
markers. The asymptotic marker associated with each puncture corresponds to a ray {θ = θ0} in the local
polar coordinates; let θ+, θ1, . . . , θs represent these rays, and let x+, x1, . . . , xs be the marked points selected
earlier on the simple orbits underlying γ+, γ1, . . . , γs. Then we require that

(6) lim
ρ→0

ũ(ρ, θ+) = x+ and lim
ρ→0

ũ(ρ, θi) = xi.

Because we defined J∂t = Rα, the j-J-holomorphicity of u will follow from the conditions in (5): near y+

we have

(du ◦ j)(∂ρ) = du(∂θ) = −Rα = J(−∂t) = (J ◦ du)(∂ρ)

and

(du ◦ j)(∂θ) = du(−∂ρ) = ∂t = J(−Rα) = (J ◦ du)(∂θ),

so indeed du ◦ j = J ◦ du. Chasing down the difference in signs gives the holomorphicity near the other
punctures. For fixed Reeb orbits γ+, γ1, . . . , γs, we now define the moduli space

M(γ+; γ1, . . . , γs)

to be the set of j-J-holomorphic curves u : (Σ, j)→ (R×M,J) satisfying (5) and (6), subject to the following
equivalence relation: the curves

u : S2 \ {y+, y1, . . . , ys} and u′ : S2 \ {y′+, y′1, . . . , y′s}

with asymptotic markers r+, r1, . . . , rs and r′+, r
′
1, . . . , r

′
s are equivalent if there is a biholomorphism h : S2 →

S2 so that h(yi) = y′i for i = +, 1, . . . , s, dh(ri) = r′i for i = +, 1, . . . , s, and u = u′ ◦ h. There is naturally an
R-action on M(γ+; γ1, . . . , γs) given by translation in the t-direction of the symplectization R×M .

3.2. The compactness result. In the event that M(γ+; γ1, . . . , γs) is a compact, oriented 1-dimensional
manifold, we can obtain a signed count of M(γ+; γ1, . . . , γs)/R, and we expect such counts to be involved
in the differential of our DGA. It is important, then, that we make some compactness and transversality
statements about the moduli spaces M(γ+; γ1, . . . , γs). Because the symplectization R ×M does not have
bounded geometry at the negative end, Gromov’s compactness theorem is not available to us, so we must
give a different statement about the niceness of our moduli spaces. Obtaining such results requires a careful
perturbation of the Cauchy-Riemann equation defining J-holomorphic curves, and treatments of these ideas
can be found in [9], [1], and [5]. We will not explore this here, but under certain restrictive conditions, we
obtain the following result.
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u

γ+

γ1 γ2
γ3

u11

γ+

C1 = {u11}

u12

γ1 γ2

u22

γ3

C2 = {u12, u22}

Figure 2. A broken J-holomorphic curve in the boundary of M(γ+; γ1, γ2, γ3)/R.

Theorem 3. Let γ+, γ1, . . . , γs ⊂ M2n−1 be closed Reeb orbits. Then M(γ+; γ1, . . . , γs)/R is a union of
compact manifolds with corners along a codimension-1 branching locus. Each manifold with corners in this
union has dimension

(7) (n− 3)(1− s) + µCZ(γ+)−
s∑
i=1

µCZ(γi) + 2crel1 (ξ,Σ)− 1,

where crel1 (ξ,Σ) is the first Chern class of ξ on Σ, relative to the fixed trivializations of ξ along the closed
Reeb orbits at the punctures.

Repeating a common theme for Floer theories, the boundary of M(γ+; γ1, . . . , γs) is made up of broken
versions of the curves of interest, such as the broken J-holomorphic curve seen in Figure 2. A broken J-
holomorphic curve (also called a holomorphic building of height N) is a set C1, . . . , CN of finite collections
Ck = {u1k, . . . , ulk} of J-holomorphic curves of the type described in section 3.1 such that (1) the positive
closed orbits of Ck coincide with the negative closed orbits of Ck−1 for k = 2, . . . , N , (2) the sole positive
closed orbit of C1 is γ+, and (3) the negative closed orbits of CN are γ1, . . . , γs.

Once the notion of convergence is nailed down for holomorphic buildings (something we will not pursue
here), one can obtain the following (see [1] or [4]):

Theorem 4. Fix distinct points y+, y1, . . . , ys ∈ S2 and closed Reeb orbits γ+, γ1, . . . , γs ⊂ M , and let
Σ = S2 \ {y+, y1, . . . , ys}. If the sequence of curves

(un : (Σ, j)→ (R×M,J)) ⊂M(γ+; γ1, . . . , γs)

has a uniform energy bound E0 > 0, then there is a subsequence of these curves which converges to a
holomorphic building of height N ≥ 1.

3.3. Narrowing the moduli space. One way to obtain the necessary energy bounds on the moduli spaces
M(γ+; γ1, . . . , γs) is to specify homology classes for their J-holomorphic curves. For a moduli space such as
MA(γ+; γ1, . . . , γs), with A ∈ H2(M,Z), to make sense, we must first assign to each J-holomorphic curve in
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M(γ+; γ1, . . . , γs) a homology class in H2(M,Z).

Given a J-holomorphic curve u = (a, ũ) : Σ→ R×M , we will produce an element of H2(M,Z) by “cap-
ping off” the surface ũ(Σ) ⊂ M , which has boundary components corresponding to the closed Reeb orbits
γ+, γ1, . . . , γs. So for each closed Reeb orbit γ0 in M we must produce a surface Sγ0 which will be used to
cap off ũ(Σ).

If [γ0] = 0 ∈ H1(M,Z), it is natural for us to choose Sγ0 to be a spanning surface for γ0; in case γ0

is not null-homologous, we do a bit more work. First, write H1(M,Z) as a direct sum F ⊕ T of a free
module F and a torsion module T , and choose curves C1, . . . , Cj ⊂M representing a basis for F and curves
D1, . . . , Dl ⊂ M representing a minimal generating set for T . If [γ0] ∈ F , we choose Sγ0 ⊂ M providing a
homology between γ0 and a linear combination of the curves C1, . . . , Cj , while if [γ0] 6∈ F , we choose Sγ0
providing a homology between γ0 and a linear combination of the curves C1, . . . , Cj and D1, . . . , Dl, with
minimal nonnegative coefficients of D1, . . . , Dl. With capping surfaces chosen for all closed Reeb orbits of M ,
we glue Sγ+ , Sγ1 , . . . , Sγs to ũ(Σ) along its boundary components. Because γ+ is homologous to γ1 t · · · t γs
(since ũ(Σ) provides a cobordism), the resulting surface is closed. Finally, we let A ∈ H2(M,Z) be the
homology class of this surface and call A the homology class of u. We denote by MA(γ+; γ1, . . . , γs) the
collection of J-holomorphic curves in M(γ+; γ1, . . . , γs) with homology class A.

The selection of a spanning surface Sγ0 for each closed Reeb orbit γ0 resolves the ambiguity of our grading,
and also allows us to simplify the expression (7) for the dimension of the moduli space MA(γ+; γ1, . . . , γs).
We may fix trivializations of ξ over the representative curves C1, . . . , Cj and D1, . . . , Dl and use the spanning
surfaces to extend these trivializations to a trivialization over γ0. These preferred trivializations then provide
the grading we use in contact homology2. In case γ0 6∈ F , choose k ∈ N minimal with γk0 ∈ F . Then we have
two different trivializations of ξ over γk0 : one obtained as above, using Sγk0 , and another by pulling back the

trivialization over γ0. We then have

|γ0| = µCZ(γ0)− 2
w

k
+ n− 3 ∈ 1

k
Z,

where w is the rotation number of the pullback trivialization of ξ over γk0 with respect to the spanning-surface
trivialization. So we have

µCZ(γ0) = |γ0| − (n− 3) + 2
w

k
.

Substituting into (7) yields

(8) dimMA(γ+; γ1, . . . , γs) = |γ+| −
s∑
i=1

|γi|+ 2〈c1(ξ), A〉.

(Recall that (7) gives dimMA(γ+; γ1, . . . , γs)/R.) This expression will allow us to easily check that our
differential has a grading of −1.

3.4. The differential. Recall the differential in Morse homology: the differential of a critical point of index
k is a weighted sum of the critical points with index k−1, and the weights are intended to count the number
of curves from one critical point to the next. Our differential follows this pattern, and we begin by defining
the relevant weights. Let Γ− be a collection of good Reeb orbits:

Γ− = (γi11 , . . . , γ
is
s ).

Here the notation γ
ij
j does not represent the ij-fold cover of the Reeb orbit γj , but instead indicates that Γ−

contains ij copies of γj . The collection Γ− will provide the negative ends for a moduli space of J-holomorphic
curves, and we do not want to distinguish between curves which agree up to, say, having switched a pair of
copies of γ1. To this end, we define the multiplicity of Γ− to be

mΓ− =

s∏
j=1

ij !m(γj)
ij ,

2The trivialization used in the above example cannot be extended over a spanning surface, and is therefore not the preferred

trivialization
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where m(γj) is the multiplicity of γj over a simple closed Reeb orbit. For a homology class A ∈ H2(M,Z)
and a good Reeb orbit γ+, we define

nAγ+,Γ−
=

#(MA(γ+; Γ−)/R)

mΓ−

if dimMA(γ+; Γ−) = 1, and define nAγ+,Γ−
= 0 otherwise. These numbers give a (signed3) count of the J-

holomorphic curves with a positive end at γ+ and negative ends at Γ−, with homology class A ∈ H2(M,Z).
Because the spaces MA(γ+; Γ−)/R are compact, the numbers nAγ+,Γ−

are finite, and are zero for almost all

A ∈ H2(M,Z). For this reason we may define the coefficients

nγ+,Γ− =
∑

A∈H2(M,Z)

nAγ+,Γ−
eA ∈ Q[H2(M,Z)].

At long last, we define the differential on generators of A by

(9) dγ+ :=
∑
Γ−

nγ+,Γ−γ
i1
1 · · · γiss .

The differential is extended to all of A using the graded Leibniz rule.

To verify that the differential has degree −1, suppose nAγ+,Γ−
6= 0, so that (8) gives

1 = |γ+| −
s∑
j=1

ij |γj |+ 2〈c1(ξ), A〉.

Recall the grading on Q[H2(M,Z)]:
|nAγ+,Γ−

eA| = −2〈c1(ξ), A〉.
From this we see that

|nAγ+,Γ−
eAγi11 · · · γiss | = |nAγ+,Γ−

eA|+
s∑
j=1

ij |γj | = −2〈c1(ξ), A〉+

s∑
j=1

ij |γj | = |γ+| − 1,

so indeed |dγ+| = |γ+| − 1.

3.5. Contact homology. Finally we define the contact homology of the contact manifold (M, ξ). Our
ability to make this definition follows from the following theorem.

Theorem 5. (Eliashberg-Givental-Hofer, [7]) Let (M, ξ) be a co-orientable, compact contact manifold sat-
isfying the various assumptions made during this talk4. Then the pair (A, d) defined above is a differential
graded algebra, and the homology H∗(A, d) is independent of the contact form α chosen with kerα = ξ, of
the complex structure J on ξ, and of the perturbation of the moduli spaces.

Definition. The contact homology HC∗(M, ξ) is the homology H∗(A, d) of the DGA described above.

3Obtaining a signed count of course requires the moduli spaces to be oriented. For information on how to produce coherent

orientations on the moduli spaces (and why these orientations require the exclusion of bad Reeb orbits), see [5].
4Whatever those may be.
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