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Abstract

These are lecture notes from a working seminar on notions of flexibility and overtwistedness in (mostly
higher-dimensional) contact topology. The first half of the seminar was spent studying the classification
of overtwisted contact structures in all dimensions, as in [BEM15]. In the second half of the seminar, the
relationships between overtwistedness and geometric phenomena such as loose Legendrians, plastikstufe,
and contact (+1)-surgeries were studied, with heavy reliance on [CMP19].
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1 An overview of flexibility in contact topology
The ordinary differential equation

y2 + (y′)2 = −4

has no real-valued solutions. This claim is obvious when we consider the algebraic, or formal problem of
finding real-valued functions u, y which satisfy

y2 + u2 = −4.

Because no solutions to this problem exist, there are certainly no solutions which additionally satisfy u = y′.

It seems reasonable that we could obstruct solutions to partial differential equations or partial differential
relations by showing that a corresponding formal problem cannot be solved. But a truly interesting phe-
nomenon would be the converse: are there partial differential relations for which our only obstacle is the
formal problem? Amazingly, our seminar this quarter will provide a number of situations where the answer
is yes. Whenever such a circumstance exists, we say that we have an h-principle for the problem in question,
and we think of the problem as being flexible.

1.1 Definitions
Flexible problems exist throughout geometry, but the interplay between rigidity and flexibility is especially
rich in symplectic and contact geometry. We’ll now provide a smattering of basic definitions and results from
these disciplines.

Definition. A symplectic form on a smooth manifold is a closed, non-degenerate differential 2-form. That
is, ω onW 2n is symplectic if dω = 0 and ωn 6= 0. In this case, we call the pair (W,ω) a symplectic manifold.

Definition. Let M2n+1 be an oriented smooth manifold. A contact structure on M is a maximally non-
integrable hyperplane field ξ ⊂ TM . That is, for each point p ∈M there is a neighborhood on which we may
write ξ = kerα for some 1-form α satisfying

α ∧ (dα)n > 0. (1.1)

We call α a contact form for ξ, call (1.1) the contact condition, and call the pair (M, ξ) a contact manifold.

Remark. (a) We will in fact always assume that ξ is co-orientable, meaning that the contact form α satisfies
ξ = kerα on all ofM .

(b) If this is your first encounter with contact manifolds, it might be worth checking that
(1) The distribution ξ is co-orientable if and only if TM/ξ →M is trivial.
(2) A co-orientable distribution ξ = kerα is integrable if and only if α ∧ dα ≡ 0.

Notice that the contact condition (1.1) is a partial differential relation. The formal version of this relation
is

α ∧ ωn > 0,

for some 1-form α and some 2-form ω. This motivates the following definition.

Definition. LetM2n+1 be an oriented smooth manifold. An almost contact structure onM is a pair (α, ω),
defined up to a scalar factor, where α is a nonvanishing 1-form onM , and ω is a non-degenerate 2-form on
kerα.

Observe our technique for moving from a partial differential relation to a formal relation: we simply omit
any differential conditions. To define the formal homotopy counterpart to a symplectic form, this means
dropping the condition that our form be closed.

Speaker: Austin Christian
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Definition. An almost symplectic structure on a smooth manifold is a non-degenerate 2-form.

Even before considering the formal homotopy versions of contact and symplectic structures, these geome-
tries exhibit a surprising amount of flexibility.
Theorem 1.1 (Gray’s stability theorem). Let ξt, t ∈ [0, 1] be a smooth family of contact structures on a manifoldM
which coincide outside of a compact set. Then there is an isotopy (ψt)t∈[0,1] ofM such that ψ∗t ξt = ξ0 for t ∈ [0, 1].

The upshot of this theorem is that we cannot change the contactomorphism class of our contact structure
by a deformation. This contrasts sharply with the situation for Riemannian manifolds, but symplectic
structures exhibit the same behavior:
Theorem 1.2 (Moser). Let ωt, t ∈ [0, 1] be a smooth family of symplectic forms on a manifoldM which coincide
outside of a compact set, and suppose that each ωt − ω0 belongs to the same cohomology class with compact support.
Then there is an isotopy (ψt)t∈[0,1] ofM such that ψ∗t ωt = ω0 for t ∈ [0, 1].

Weconclude our definitions section by defining an important class of submanifolds of contact or symplectic
manifolds.

Definition. Let M be a smooth manifold carrying either a contact structure ξ (if dimM = 2n + 1) or a
symplectic structure ω (if dimM = 2n). We call a submanifold L isotropic if TL ⊂ ξ in the contact case, or if
ω|L ≡ 0 in the symplectic case. If L is of maximal dimension n, then we call L Legendrian in the contact case
and Lagrangian in the symplectic case.

Some of the earliest h-principleswere for immersion or embedding problems; in the contact and symplectic
categories, isotropic submanifolds are the relevant objects for these types of problems.

1.2 Gromov’s alternative
This section contains some history of the flexible/rigid dichotomy in contact/symplectic topology, as told in
[Eli15].

In the late 1960s, Gromov observed several instances of the h-principle in the symplectic and contact
categories. For instance, next week we’ll discuss Gromov’s h-principle for contact structures on open
manifolds:
Theorem 1.3 ([Gro69]). Given an open manifoldM , a non-vanishing 1-form α0 onM , and a non-degenerate 2-form
ω0 on ξ0 = kerα0, there exists a family of non-vanishing 1-forms αt onM and a family of non-degenerate 2-forms ωt
on ξt = kerαt, t ∈ [0, 1], such that α1 is a contact form and ω1|ξ1 = dα1|ξ1 .

In the same paper, Gromov also proved h-principles for Lagrangian immersions and ε-Lagrangian embed-
dings, which are embeddings which fail to be Lagrangian by an angle of at most ε. Altogether, these results
could be taken as growing evidence for the field of symplectic/contact topology being flexible, and Gromov
came close to proving this statement in a more precise way:
Theorem 1.4 ([Gro86, Section 3.4.4(H)]). Let (M,ω) be a connected symplectic manifold, and let DiffM be the
group of diffeomorphisms ofM , with subgroups

SympM ⊂ VolM ⊂ DiffM

of symplectomorphisms and volume-preserving diffeomorphisms, respectively. Then SympM is either C0-closed in
DiffM or its C0-closure is VolM .

This is known as Gromov’s alternative, and if the latter statement were true, then we would say that
Gromov’s alternative has reached a flexible resolution. Namely, every volume-preserving diffeomorphism
of (M,ω) could be C0-approximated by symplectomorphisms, and thus problems of symplectic geometry
would be reduced to the more flexible problems of volume-preserving geometry. For better or worse, a rigid
resolution was reached.
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Theorem 1.5 ([Eli81]). For a connected symplectic manifold (M,ω), the group SympM is C0-closed in DiffM .

Remark. The dates here are a little confusing. It seems that Gromov’s alternative was known well before
Eliashberg’s rigidity result, but the standard citation for Gromov’s alternative is his book [Gro86], and
Gromov’s book cites Eliashberg’s announcement [Eli81] of his rigidity result. The contact analogues of
Theorems 1.4 and 1.5 are also true (see [MS14]).

The most revolutionary manifestation of rigidity in symplectic topology was the introduction [Gro85]
by Gromov of pseudoholomorphic curves. These have made possible possible the construction of Floer
theories, Hofer’s metric on Hamiltonian diffeomorphisms, Gromov-Witten invariants, and indeed much
of the symplectic/contact topology that has been developed over the last 35 years. The stunning success
of pseudoholomorphic curve techniques is probably what led Eliashberg to his “holomorphic curves or
nothing" philosophy — if an h-principle cannot be disproved via holomorphic curve techniques, then it’s
probably true.

1.3 Flexibility makes a comeback
As successful as pseudoholomorphic curve techniques have been, there do, in fact, remain flexible problems
in symplectic and contact topology. We will pursue this side of the dichotomy by studying the classification
of overtwisted contact structures in all dimensions.

1.3.1 Overtwistedness in dimension three

Perhaps the most natural problem in contact geometry is that of classifying contact structures (say, up to
isotopy) on an odd-dimensional manifoldM . Generally, this problem has proven to be remarkably subtle,
but in dimension three there are several things we can say. Martinet [Mar71] showed that every 3-manifold
admits a contact structure, and Lutz [Lut71] showed that, in fact, every homotopy class of 2-plane fields on a
3-manifold admits a contact structure.

This is a very natural occasion for the appearance of an h-principle. Thanks to Gray’s theorem, a pair
ξ, ξ′ of contact structures on M are isotopic if and only if they are homotopic as contact structures. The
corresponding formal problem asks only if ξ, ξ′ are homotopic as 2-plane fields, relaxing the condition of
maximal non-integrability. That is:

Must two contact structures onM which are homotopic as 2-plane fields be homotopic as contact structures?

If the answer were yes, we would have an h-principle for contact structures on 3-manifolds, and the classifi-
cation of contact structures up to isotopy would, in dimension three, be equivalent to the classification of
2-plane fields up to homotopy. Alas, this is not the case.
Theorem 1.6 ([Ben83]). There exist contact structures on S3 which are homotopic as 2-plane fields, but which are
not isotopic as contact structures.

Remark. According to [EH01], there are 3-manifolds whose contact structures are determined up to isotopy
by their homotopy type as 2-plane fields, but these are very much the exception rather than the rule.

The feature used by Bennequin to distinguish contact structures on S3 may seem at first an oddity, but an
upcoming talk will attempt to motivate the definition of overtwisted discs and discuss why they’ve been so
important.

Definition. An embedded discD in a contact manifold (M, ξ) is an overtwisted disc if (1) its boundary ∂D
is a Legendrian curve; (2) the surface and contact framings of ∂D agree; (3) the characteristic foliation Dξ

contains a unique singular point in the interior of D.

Remark. The surface framing of ∂D is TD|∂D, while the contact framing is ξ|∂D.

Definition. A contact structure ξ on a 3-manifoldM is called overtwisted if (M, ξ) contains an overtwisted
disc. A contact structure which is not overtwisted is called tight.
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Remark. Observe that overtwistedness is a contactomorphism invariant (and hence an isotopy invariant).
Overtwistedness seems at first a strange property, but it’s the property used by Bennequin to distinguish

between1 (R3
x,y,z, ker(dz + xdy)) and (R3

r,θ,z, ker(cos rdz + r sin rdθ)). Perhaps more importantly, overtwisted
contact structures obey an h-principle.
Theorem 1.7 ([Eli89]). Two overtwisted contact structures on a 3-manifold which are homotopic as plane fields are
homotopic as contact structures.

In the last decade, several further contact-topological discoveries have been made which have a flexible
flavor. A few keywords include loose Legendrians, a type of Legendrian embedding which satisfies an h-
principle; flexible Weinstein manifolds, which are symplectic manifolds built from handles which are attached
along loose Legendrians; and plastikstufe, a type of embedded object which can play a role similar to that of
an overtwisted disc. Some or all of these keywords may make further appearances this quarter, but our first
concern will be with the classification of overtwisted contact structures in all dimensions.

1.3.2 Overtwistedness in all dimensions

The purpose of at least the first half of our seminar will be to understand the main results of [BEM15], the
first of which is an existence h-principle for contact manifolds in any dimension.
Theorem 1.8 ([BEM15]). LetM be a (2n+ 1)-manifold, A ⊂M be a closed set, and ξ be an almost contact structure
onM . If ξ is genuine on an open neighborhood of A, then ξ is homotopic relative to A to a genuine contact structure. In
particular, any almost contact structure on a closed manifold is homotopic to a genuine contact structure.

Notice that this generalizes Gromov’s h-principle for contact structures on open manifolds of any odd
dimension, as well as generalizing work of Martinet and Lutz on closed 3-manifolds.

Next we want to state a somewhat general result from [BEM15], of which the classification of overtwisted
contact structures is a corollary. We should first say what it means for a contact manifold (M2n+1, ξ) to be
overtwisted. Let us say that a contact manifold is overtwisted if it admits a contact embedding of a piecewise
smooth disc D2n

ot with a model contact germ ζot which we will specify later. In the n = 1 case, this model
agrees with the previous notion of overtwistedness.

With this working definition of overtwistedness, we can begin thinking about an h-principle. Consider a
(2n+ 1)-manifoldM , a closed subset A ⊂M , and an almost contact structure ξ0 onM which is a genuine
contact structure on OpA, some unspecified open neighborhood of A. We write Contot(M ;A, ξ0) for the
space of contact structures onM which (1) are overtwisted onM \ A and (2) agree with ξ0 on OpA. By
Cont(M ;A, ξ0) we mean the space of almost contact structures which agree with ξ0 on OpA, relaxing the
contact and overtwistedness conditions. Notice that we have an inclusion

j : Contot(M ;A, ξ0)→ Cont(M ;A, ξ0)

of our space of contact structures into its formal analogue.
Theorem 1.9 ([BEM15]). The inclusion Contot(M ;A, ξ0)→ Cont(M ;A, ξ0) is a weak homotopy equivalence.

Notice that by taking A = ∅we have an isomorphism between homotopy classes of overtwisted contact
structures onM and homotopy classes of hyperplane fields onM . Applying Gray’s stability theorem, we
have the following corollary.
Corollary 1.10 ([BEM15]). On any closed manifoldM any almost contact structure is homotopic to an overtwisted
contact structure which is unique up to isotopy.

1We stated Bennequin’s distinction for contact structures on S3; by removing a point from S3 we obtain the contact structures on R3

listed here.
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In the time since Bennequin first observed the overtwisted phenomenon in dimension 3, there have
been various attempts at generalizing this notion to higher dimensions. Corollary 1.10 is perhaps the most
compelling reason for thinking of the generalization offered by Borman-Eliashberg-Murphy as the correct
one. Once we have discussed the proof of Theorems 1.8 and 1.9, we will investigate other exotic phenomena
which indicate overtwistedness, including plastikstufe [Nie06] and perhaps bLobs [MNW13] and overtwisted
oranges [HH18]. The existence of any of these embedded objects in a contact manifold is now known to be
equivalent to overtwistedness, and each of them has their own use in establishing properties of overtwisted
contact structures.

For instance, plastikstufe are useful because it is known that contact manifolds admitting embedded
plastikstufe are not symplectically fillable ([Nie06]) and satisfy the Weinstein conjecture ([AH09]). Both
of these properties hold for overtwisted contact manifolds in dimension 3, and because plastikstufe detect
overtwistedness, are now known to hold for overtwisted contact manifolds in any dimension.

1.4 Plan for the quarter
As we’ve said, our first goal this quarter is to understand the proofs of Theorems 1.8 and 1.9. Because these
results build on Gromov’s h-principle for contact structures on open manifolds ([Gro69]), we will start
there. Once we understand Gromov’s proof, we will review the overtwisted classification in dimension 3
([Eli89]) before spending three or so talks sketching the proofs of the main results of [BEM15]. Once we
feel comfortable with the classification of overtwisted structures, our goal will be to understand various
geometric criteria which are equivalent. We will learn about the relationship between loose Legendrians and
overtwisted discs ([CMP19], [Hua17]) before turning to plastikstufe ([Nie06]), bLobs ([MNW13]), and
overtwisted oranges ([HH18]). We also plan to use these other criteria to prove important properties about
overtwisted contact structures.
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2 Gromov’s h-principle for contact structures on open manifolds
The goal of this talk is to prove the following theorem of Gromov:
Theorem 2.1 ([Gro69]). Given an open manifoldM , let ContM denote the space of cooriented contact structures
onM , and let ContM denote the space of cooriented almost contact structures. Then the inclusion

ContM ↪→ ContM

is a weak homotopy equivalence.

This should be compared to Theorem 1.3, both results being referred to as Gromov’s h-principle for contact
structures on open manifolds.

Once we have set up the appropriate language, this result will follow quickly from the holonomy approxi-
mation theorem, and this talk will essentially be divided into two parts: first we establish enough background
to state the holonomy approximation theorem, and then we discuss how to interpret Gromov’s result as a
holonomic approximation problem.

2.1 Jet bundles
Recall that h-principles are formulated in terms of some partial differential relation. We replace our partial
differential relation with an algebraic problem which is formally identical, but in which derivatives are
replaced by independent higher-order information. This strategy is made more formal with the introduction
of jet spaces, the appropriate setting for studying partial differential relations.
Remark. Throughout the rest of this talk (and indeed, much of the rest of this quarter) we will use the notation
OpA to denote an unspecified open neighborhood of some subset A ⊂M .

Definition. LetX →M be a fiber bundle over a smoothmanifoldM . We define the r-jet bundle Jr(X)→M
(also denoted X(r) →M) by letting the fiber over p ∈M be given by

Γ(X → Op p)/ ∼,

where we have s1 ∼ s2 for some sections s1 : U → X, s2 : V → X if there are local coordinates on Op p in
which s1 and s2 have the same Taylor polynomials at p, up to order r.

Where a section of the original bundle X →M records some piece of information over each point p ∈M ,
a section of Jr(X)→M records that same information, along with higher-order (derivative) information.
Notice that each section of Jr(X)→M induces a section of X →M .
Example 2.2. The notion of jet bundles is best understood through some simple examples.
(1) Given a fiber bundle X →M , consider J0(X)→M . The fiber over a point p ∈M consists of sections

of X → Op p, where we identify s1, s2 : Op p→ X whenever s1(p) = s2(p). So the fiber is simply Xp,
and we see that J0(X) = X .

(2) Consider the 1-jet bundle J1(M,R) of the trivial bundleM × R→M . The fiber over p ∈M is given
by all sections ofM × R→M over Op p, subject to an equivalence relation which identifies sections
f, g : Op p → R whenever f(p) = g(p) and dfp = dgp. So the fiber over p ∈ M is given by R × T ∗pM ,
and we see that J1(M,R) = R× T ∗M .

(3) Similarly, we denote by Jr(Rn,Rm) the r-jet bundle of the trivial bundle Rn × Rm → Rn. A section of
the trivial bundle is simply a map f : Rn → Rm, and all notions of closeness between such sections are
determined pointwise. We may construct from f its r-jet at x:

Jrf (x) = (f(x), f ′(x), . . . , f (r)(x)),

Speaker: Joseph Breen
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R

R

Figure 1: A non-holonomic section of J1(R,R).

recording the value of f as well as the values of its various derivatives up to order r at the point x.
The assignment x 7→ (x, Jrf (x)) is then a section of J (r)(Rn × Rm) → Rn. We call this the r-jet of f .
Notice that for smooth maps f, g : Rn → Rm, the r-jets Jrf and Jrg agree at a point x ∈ Rn if the original
sections and all of their derivatives up to order r agree at x. At the same time, there are sections of the
r-jet bundle which do not arise from sections of the original bundle.

We can justify the last claim of the above example with a standard counterexample. The 1-jet bundle
J1(R,R) is given by R× T ∗R→ R. If f : R→ R is any nonzero smooth map, we may construct a section

x 7→ (x, f(x), 0).

Because df 6= 0, this section does not arise from a section of the original bundle.

Definition. A section F of Jr(X)→M is said to be holonomic if F is the r-jet of the sectionM → X which
it induces. We call sections which are not holonomic non-holonomic or formal.

Because they record differential information, jet bundles are a natural setting for the study of differential
relations. We think of sections of the jet bundle as (formal) solutions to our differential relation, with genuine
solutions being represented by holonomic sections. Wemay then obtain an h-principle for a problem specified
by a differential relation by (1) constructing a jet bundle whose sections give formal solutions to our relation,
and (2) perturbing non-holonomic sections to holonomic sections. The latter step can be addressed in some
generality, so we treat it first.

2.2 Holonomic approximation
Let us first show that there are formal sections which cannot be well-approximated by holonomic sections. As
noted above, we can construct a section x 7→ (x, f(x), 0) of J1(R,R) for any smooth map f : R→ R. Consider
the function f(x) = x, which generates the section x 7→ (x, x, 0) depicted in Figure 1. To find a holonomic
section which is ε-close to this formal section means finding g : R→ R so that

|f(x)− g(x)| < ε and |0− g′(x)| < ε,

for all x ∈ R. For ε < 1, no such g exists (by, say, the mean value theorem). So we cannot approximate an
arbitrary non-holonomic section by holonomic sections.

Perhaps we wonder whether giving ourselves an extra dimension will help. Namely, consider J1(R2,R),
and the section defined by

(x, y) 7→ (x, y, x, 0, 0).

This section has pointwise information given by f(x, y) = x, and tangential information given by 0. Notice
that, for the same reason as before, this section cannot be approximated by holonomic sections — or even by
sections which are only required to be holonomic when restricted to a neighborhood of the x-axis in R2. So
holonomic approximation seems somewhat hopeless; we cannot guarantee an approximation of a formal
section by holonomic sections, even in a neighborhood of a codimension 1 polyhedron. But it turns out that
we win if we’re willing to perturb the polyhedron.
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Figure 2: In blue, the pointwise data of a non-holonomic section (with differential data given by 0) over the
x-axis. In red, a holonomic section which approximates the non-holonomic section over a polyhedron which
is close to the x-axis. (The red section is not contained in the plane.)

Theorem 2.3 (Holonomic approximation theorem). Consider a fiber bundle X →M with some fixed metric and
let K ⊂ M be a polyhedron of positive codimension. For any section F : OpK → Jr(X) and any small ε, δ > 0,
there exist a δ-small diffeotopy hτ : M →M , τ ∈ [0, 1] and a holonomic section F̃ : Op(h1(K))→ Jr(X) such that
|F̃ (p)− F (p)| < ε for all p ∈ Op(h1(K)).

Notice what this means for our badly-behaved section (x, y) 7→ (x, y, x, 0, 0): though we cannot produce a
holonomic approximation near the x-axis, we can produce a holonomic approximation near a polyhedron
which is C0-close to the x-axis. Namely, we may perform a large number of small "switchbacks" near the
plane z = x, approximating our formal section while staying nearly horizontal. See Figure 2.

A proof of the holonomic approximation theorem can be found in [EM02, Chapter 3].

2.3 Proof of Theorem 2.1
Our goal now is to construct a jet bundle whose sections are almost contact structures. We will then use the
holonomic approximation theorem to prove Theorem 2.1.

Consider the bundle Λ1(M)→M , whose sections are 1-forms onM . A holonomic section of J1(Λ1(M))
is given by (α, dα), for some α ∈ Ω1(M), and indeed an arbitrary section of J1(Λ1(M)) may be written as
(α, ω), with α a 1-form onM and ω a 2-form. Recall that an almost contact structure onM is a pair (α, ω),
defined up to a scalar factor, with α non-vanishing and ω non-degenerate on kerα. In particular an almost
contact structure leads to a section of J1(Λ1(M)).
Remark. Notice that an almost contact structure does not lead to a unique section of J1(Λ1(M)). But the space
of sections representing a fixed almost contact structure is contractible.

Thinking2 of a point in J1(Λ1(M)) as (αp, ωp) for some 1-form α and 2-form ω, we will enforce the
non-degeneracy requirement of almost contact structures by considering the subspace

Rcontact := {(αp, ωp) ∈ J1(Λ1(M))|αp ∧ ωnp > 0},

where dimM = 2n+ 1.

At last, we are prepared to show that the map

π0(ContM)→ π0(ContM)

induced by the inclusion ContM ↪→ ContM is an isomorphism. We will prove that this induced map is a
surjection.

2We haven’t explained why we’re allowed to think of the points of J1(Λ1(M)) in this way. Basically a point in J1(Λ1(M)) should
consist of pointwise information — a linear functional — and first-order information — a local variation, which can be represented by a
matrix, and then symmetrized. See [EM02, Chapter 10].
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We start bymaking crucial use of our assumption thatM is an openmanifold. Fix a triangulation ofM and
a collection of disjoint paths connecting the barycenters of the top-dimensional simplices of our triangulation
to∞. We may use these paths to isotopeM away from the barycenters of the top-dimensional simplices, then
deformation retract the punctured top-dimensional simplices onto neighborhoods of their boundaries. In
this way,M admits a deformation retraction onto a subcomplex consisting of those codimension 1 simplices
which do not intersect the paths we’ve chosen. In particular, we have the following fact.
Proposition 2.4. Every open manifoldM admits a polyhedronK ⊂M of positive codimension, an arbitrarily small
neighborhood U ofK, and an isotopy ϕt : V → V , t ∈ [0, 1], such that ϕt(M) ⊂ U .

Now think of an almost contact structure (α, ω) as a section of J1(Λ1(M)) and apply the holonomic
approximation theorem to this section, with the polyhedronK identified above. The result is a diffeotopy
hτ : M → M , τ ∈ [0, 1] and a holonomic section (α̃, dα̃) of J1(Λ1(M)) on Op(h1(K)) which is arbitrarily
close to (α, ω)|Op(h1(K)). Because we have C0-wiggle room, we may assume that (α̃, dα̃) lies in the open set
Rcontact. If ε is sufficiently small (and hence (α̃, dα̃) is sufficiently near (α, ω)), then we may further assume
that (α, ω) and (α̃, dα̃) are homotopic inRcontact (for instance via a linear interpolation).

At last, we extend our holonomic approximation to all of J1(Λ1(M)). With ϕt the isotopy identified by
the above proposition, notice that (ϕ∗1α̃, dϕ

∗
1α̃) is a holonomic section of J1(Λ1(M)) contained in Rcontact.

We obtain a homotopy from (α, ω) to this holonomic section by concatenating our homotopy from (α, ω)
to (α̃, dα̃) with the homotopy (ϕ∗t α̃, dϕ

∗
t α̃). So (α, ω) admits a homotopy to a holonomic section entirely

contained inRcontact. That is, any almost contact structure is isotopic through contact structures to a genuine
contact structure.

So the inclusion ContM ↪→ ContM induces a surjection on path components; this map is also an injection,
and the proof is similar. With a parametric version of the holonomic approximation theorem, one can in fact
show that this map is a homotopy equivalence.
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3 The overtwisted classification in dimension 3
The goal of today’s talk is to understand a proof of the following result.
Theorem 3.1 ([Eli89]). LetM be a closed 3-manifold. In every homotopy class of 2-plane fields onM , there is a
unique overtwisted contact structure.

Eliashberg proves this as a consequence of theorem which takes slightly more effort to state. LetM be a
closed, connected, oriented 3-manifold, and fix an embedded 2-disc ∆ ⊂M . We fix a contact germ ζ on ∆
which makes (∆, ζ) an overtwisted disc. That is, ζ is a 2-plane field defined on ∆ which satisfies ζ = T∆ at
precisely one interior point of ∆ —we call this point the center of ∆ — and T (∂∆) ⊂ ζ. We now consider
two sets of 2-plane fields onM :

• Contot(M,∆) is the set of contact structures on M which agree with ζ on ∆ (these are necessarily
overtwisted);

• Dist(M,∆) is the set of 2-plane fields which agree with ζ at the center of ∆.
Notice that Contot(M,∆) is a subset of Dist(M,∆).
Theorem 3.2 ([Eli89]). The inclusion Contot(M,∆) ↪→ Dist(M,∆) induces an injection on path components.

Bywork of Lutz andMartinet, this inclusionwas already known to induce a surjection on path components;
Theorem 3.2 allows us to conclude that the inclusion is a weak homotopy equivalence. In today’s talk we will
sketch a proof of Theorem 3.2, omitting for brevity’s sake the final step of deriving Theorem 3.1. See, for
instance, [Gei08, Section 4.7.1] for this last step.

3.1 Outline of the argument
We’ll have a proof of Theorem 3.2 if, whenever ξt ∈ Dist(M,∆), t ∈ [0, 1], is a path connecting ξ0, ξ1 ∈
Contot(M,∆), we’re able to construct a path in Contot(M,∆) connecting these two contact structures. Such
a path is constructed in three steps.

Step 1. First, we may identify a finite collection B0, B1, . . . , Bm ⊂M of disjoint embedded balls away from
which we can win our game. That is, we will homotope (rel. endpoints) the family ξt so that each ξt will
satisfy the contact condition outside B0, B1, . . . , Bm. These balls will be chosen so that their complement is a
neighborhood of the 2-skeleton of a simplicial decomposition ofM — reminiscent of Gromov’s h-principle —
and we will control the restrictions ξt|∂Bi as best we can.

Step 2. Next, the ballsB0, B1, . . . , Bm may be connected to obtain a single ballBt, which varies with t. Again,
we carefully control the restriction ξt|∂Bt .

Step 3. Finally, we "fill the hole." Because we have controlled the behavior of ξt along ∂Bt, we will be able to
extend ξt|M\Bt to a continuous family ξt keeping ξ0, ξ1 fixed, and completing our proof.

A similar road map will be followed in the higher-dimensional classification, where we will create and fill
"universal holes." The real goal of today is to understand how we would prove this result, discussing enough
basic contact geometry notions that the proof sketch will become accessible. Details will be added to the
outline of the argument as time permits.

3.2 Background
3.2.1 Characteristic foliations

We start by explaining how we record the data of a contact structure on a surface Σ in a contact 3-manifold
(M3, ξ). Note that, because ξ is maximally non-integrable, there are no open subsets of Σ on which Σ is

Speaker: Zachary Smith
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(a) S2 ⊂ (R3, ξtight) (b) S2 ⊂ (R3, ξot)

Figure 3: The characteristic foliation of S2 in a pair of contact structures on R3.

tangent to ξ. That is, the singular points of Σ — the points p ∈ Σ where TpΣ = ξp — are isolated. Away
from these points, TΣ and ξ are transverse 2-plane distributions on Σ, and thus determine a line bundle
Σξ := TΣ ∩ ξ ⊂ TΣ. This line bundle may be integrated to a 1-dimensional foliation; we call the singular
foliation of Σ obtained by including the singular points the characteristic foliation of Σ, also denoted Σξ.
Example 3.3. Figure 3 shows the characteristic foliation on S2 in a pair of contact structures on R3. In both
cases, S2 has two singular points — one each at the north and south poles. At the north pole, the orientations
of ξ and TS2 agree (for either choice of ξ), while at the south pole they disagree. This means that in both
spheres the north pole is a source, while the south pole is a sink. Notice, however, that the foliation in 3b has
two closed curves, while the foliation in 3a has none.

We think of a characteristic foliation as the germ of the contact structure ξ on the surface Σ. Indeed, the
characteristic foliation on Σ determines ξ on some neighborhood N(Σ) up to isotopy.
Proposition 3.4. Let Σ ⊂M be a surface in a 3-manifold, and let ξ, ξ′ be contact structures onM which induce the
same characteristic foliation on Σ: Σξ = Σξ′ . Then there is a neighborhood of Σ on which ξ and ξ′ are isotopic.

The proof of this result is an application of Moser’s trick.

3.2.2 Overtwisted discs

The essential distinguishing feature between Figures 3a and 3b is that the sphere in Figure 3b contains an
overtwisted disc.
Definition. An embedded disc ∆ in a contact manifold (M, ξ) is an overtwisted disc if
(1) its boundary ∂∆ satisfies T (∂∆) ⊂ ξ;
(2) the surface and contact framings of ∂∆ agree;
(3) the characteristic foliation ∆ξ contains a unique singular point in the interior of ∆.

A more concise (if less precise) definition of an overtwisted disc is that it’s an embedded disc whose
characteristic foliation (and thus its contact germ) matches that in the top region of the sphere in Figure 3b.

We say that a contact manifold (M, ξ) of dimension three is overtwisted if it admits an embedded
overtwisted disc; otherwise, (M, ξ) is said to be tight.

3.2.3 Darboux charts

Much of the reasoning that takes place in the proof of Theorem 3.2 is conducted in a chart which resembles
the contact manifold (R3, ker(dz + xdy)). Remarkably, every point in a contact 3-manifold admits such a
chart.
Theorem 3.5 (Darboux). Let (M, ξ) be a contact manifold of dimension three, and choose p ∈ M . There exist an
open neighborhood U ⊂M of p and a contactomorphism φ : (U, ξ|U )→ (R3, ker(dz + xdy)).

A proof of this result can be found in any introductory text on contact geometry — e.g., [Gei08].
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3.2.4 Foliations on spheres

In our outline we said that we wanted to exert some control over the contact structures ξt when restricted to
the boundaries ∂Bi of the balls that we choose. What we mean in particular is that we want the characteristic
foliation (∂Bi)ξt to be almost horizontal.

Definition. Let S ⊂ (M, ξ) be an embedded sphere, and let Sξ be its characteristic foliation. We say that Sξ
is almost horizontal if
(1) there are exactly two singular points — a north pole N , where the orientations of ξN and TNS agree,

and a south pole S, where orientations disagree;
(2) there are finitely many parallel closed leaves;
(3) all closed leaves are oriented from west to east.

We say that the foliation is simple if only the last condition fails.

We can make this last condition slightly more precise by using a transverse arc connecting S to N to
define a holonomy map h : [−1, 1] → [−1, 1]. The last condition then requires that this holonomy map be
strictly increasing — that is, points move from S towards N .
Example 3.6. Each of the spheres in Figure 3 has a north pole and a south pole, with finitely many closed
leaves. Because the sphere in Figure 3a has no closed leaves, the last condition is vacuous. We see that the
closed leaves in Figure 3b are oriented east-to-west, so this sphere is not almost horizontal.

We’ve said that in the proof of Theorem 3.2 we will want to control the foliations (∂Bi)ξt , and that we
will connect the balls Bi into a single ball Bt. We will make this connection by obtaining a transverse arc3
γ from the north pole of Bi to the south pole of Bi+1 and considering the union Bi ∪N(γ) ∪ Bi+1, where
N(γ) is a tubular neighborhood of γ. After smoothing, this union is a ball, with a foliation on its boundary
determined up to homeomorphism. If (∂Bi)ξt and (∂Bi+1)ξt are almost horizontal, then the fact that γ is
transverse will ensure that the new foliation is also almost horizontal.
Remark. We choose γ to be a transverse arc so that the characteristic foliation (∂N(γ))ξ is never vertical, where
we are thinking of ∂N(γ) as a vertical cylinder. This preserves the property of being almost horizontal.

The reason we take such care with the characteristic foliations (∂Bi)ξt is that the final step of our proof
will be to extend a contact structure across the ball Bt. The following lemma (c.f. [Gei08, Lemma 4.7.13])
says that our ability to make this extension will be determined by the foliation (∂Bt)ξt .
Lemma 3.7. Let ξ be a contact structure defined near the boundary ∂B of a 3-ball B, inducing a simple characteristic
foliation (∂B)ξ . Whether or not ξ extends over B as a contact structure is determined by the topological type of (∂B)ξ .

We can view this lemma as a consequence of Proposition 3.4, which says that the characteristic foliation
of a surface determines the contact structure near that surface.

3.3 A few more details
We can now add some details to the outline sketched above. The details we add follow those found in [Hon,
Lecture 5].

Step 1. In this first step, we create the holes away from which we will make ξt contact. These holes are
constructed to be complementary to a 2-skeleton of M . We first choose B0 to be a neighborhood of the
overtwisted disc ∆, on which the contact structures ξt are all assumed to agree. (Because ∆ is contractible
and the ξt agree at the center of ∆, it is straightforward to homotope the ξt so that they agree on all of ∆.) Be-
causeB0 is a neighborhood of an overtwisted disc, the characteristic foliation (∂B0)ξt will be that of Figure 3b.

3i.e., γ is positively transverse to ξ
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Next, we subdivideM into n � 0 small cubes C so that, once we identify C with the unit cube in R3,
each Gauss map

φξt : C → S2

satisfies ‖φξt‖ < ε
n for some small ε. Here φξt is defined by taking an oriented unit normal vector to ξt, and

‖ · ‖ denotes the supremum norm of the derivative (which is not quote the same as the C1-norm).

One can check that if S ⊂ C is a sphere whose principal curvatures are at least ε
n , then Sξt is almost

horizontal, essentially because ξt cannot twist quickly enough to create an overtwisted disc. We take S ⊂ C to
be a sphere with almost horizontal characteristic foliation which approximates ∂C. The interior of S will serve
as a ball away from which we are contact, so we want to make ξt contact on C \S. Near the poles of S, we can
perturb ξt to be contact without difficulty. We now want to make ξt contact on a neighborhood S × [−1, 1]s
which contains ∂C. On this neighborhoodwemaywrite ξt as the kernel of a 1-form α = f(s)ds+βs, where βs
is a 1-form on S (dependent on s). By perturbing βs, we may make this 1-form satisfy the contact condition.
Namely, we have α ∧ dα > 0 if

fdβs + βs ∧ (df +
d

ds
βs) > 0.

We can then modify βs to make βs ∧ ( ddsβs) sufficiently large.

One point we’ve glossed over is that, in order for S × [−1, 1] to contain ∂C, this thickened sphere must
leave C, so we lose our bound on ‖φξt‖. This can be fixed, but we won’t fix it here. Finally, there are finitely
many cubes C, and thus finitely many balls B0, B1, . . . , Bn.

Steps 2 and 3. We can now join the holes we’ve created. Namely, for each i = 0, 1, . . . , n− 1 we may choose a
1-parameter family γit of transverse arcs connecting the north pole of ∂Bi to the south pole of ∂Bi+1, disjoint
from B0, . . . , Bn. We then form a ball Bt by taking the union of B0, . . . , Bn with a standard neighborhood
N(γit) for each i and smoothing. The characteristic foliation (∂Bt)ξt will be almost horizontal, except for
the portion coming from B0, the neighborhood of the overtwisted disc. Having so standardized (∂Bt)ξt ,
Eliashberg constructs an explicit extension of ξt across Bt to complete the proof.
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4 Defining overtwistedness in all dimensions
The purpose of this talk is to outline what it means for a contact manifold of arbitrary dimension to be
overtwisted in the sense of Borman-Eliashberg-Murphy [BEM15]. As in dimension three, overtwisted
contact manifolds are characterized by the existence of an embedded disc with a germ of a contact structure
contactomorphic to a model overtwisted disc. Throughout this talk we will slowly build more complicated
contact-geometric constructions, culminating in the construction of a model overtwisted disc.

4.1 Standard models
4.1.1 Standard contact structures

Several of our model geometric objects will be constructed in R2n−1 or R2n+1. We want now to identify
standard contact structures on these spaces. For R2n−1 we make an identification with R × (R2)n−1 and
consider the contact form

λ2n−1
std := dz +

n−1∑
i=1

r2
i dti,

where (ri, ti) are polar coordinates on R2. We then define ξstd := kerλstd.

There are two ways in which we might extend λ2n−1
std to R2n+1. Most of the time we will identify R2n+1

with R2n−1 × R2 and take
ξstd := ker(λ2n−1

std + r2
ndtn), (4.1)

where (rn, tn) are polar coordinates on R2. We sometimes make the identification R2n+1 = R2n−1×T ∗R and
use

ξstd := ker(λ2n−1
std − yndxn), (4.2)

where (xn, yn) are rectangular coordinates onR2. We remark that (4.1) and (4.2) are contactomorphic contact
structures, but it will prove convenient to choose one over the other for different models.

4.1.2 Star-shaped domains and characteristic foliations

The geometry of our model objects will be controlled by insisting that these objects be transverse to certain
vector fields, and by dictating properties of the characteristic foliations of the objects, much as in the three-
dimensional case.

Definition. We will call a compact domain in (R2n−1, ξstd) star-shaped if its boundary is transverse to the
vector field Z = z∂z +

∑n−1
i=1

1
2ri∂ri . We call a contact closed ball ∆2n−1 star-shaped if it is contactomorphic

to a star-shaped domain in (R2n−1, ξstd).

Remark. Notice that because LZλstd = λstd, flowing along Z preserves ξstd. For this reason, we say that Z is
a contact vector field.

Recall that in the classification of overtwisted contact structures in dimension three, we concerned
ourselves with characteristic foliations on spheres. The higher-dimensional classification will require similar
considerations, so we now define characteristic foliations in higher dimensions.

Definition. Let Σ ⊂ (M, kerλ) be a hypersurface in a contact manifold. We call the singular 1-dimensional
distribution

ker(dλ|ker(λ|Σ))

the characteristic distribution of Σ, and call the singular foliation to which this distribution integrates the
characteristic foliation of Σ, denoted Σξ.

Speaker: Eilon Reisin-Tzur
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Remark. The characteristic foliation is independent of the contact form λ. Unlike in the 3-dimensional case,
the characteristic foliation of Σ alone probably4 does not determine the contact structure on a neighborhood
of Σ. In addition to the characteristic foliation, we need a transverse contact structure, which is to say contact
structures on hypersurfaces in Σ which are transverse to Σξ.

4.2 Contact shells
As in the three-dimensional case, the overtwisted classification will proceed by creating and filling “universal
holes" in our almost contact manifold. As before, we control the germs of the contact structures along the
boundaries of these holes, and this section establishes the terminology we will need in order to do this.

The key idea is this: suppose we have an almost contact structure on a (2n+ 1)-manifoldM , and that we
havemade this structure genuinely contact everywhere except onOp(V ), where V 2n−1 ⊂M is a codimension-
2 contact submanifold. We will then want to make the almost contact structure genuine on Op(V ), without
adjusting the structure outside of Op(V ). In this section we construct general models for extension problems
of this type.

4.2.1 Shells and gluing places

Throughout this section, a ball is treated as a domain in some ambient manifold.
Definition. A contact shell is an almost contact structure ξ on a ball B which is a genuine contact structure
on Op ∂B. We call the contact shell solid if ξ is a genuine contact structure on all of B. An equivalence
between contact shells (B, ξ) and (B′, ξ′) is a diffeomorphism g : B → B such that
(1) g∗ξ|Op ∂B′ = ξ′|Op ∂B′ ;
(2) g∗ξ is homotopic rel Op ∂B′ to ξ′ through almost contact structures.

Remark. In dimension three, we tracked the data of a characteristic foliation on ∂B, and we remarked that
this foliation determines a contact structure on Op ∂B up to isotopy. Additionally, if ξ is a contact structure
defined on Op ∂B, then whether or not ξ can be extended to a contact structure on B is determined by the
topological type of the characteristic foliation. (c.f. [Gei08, Lemma 4.7.13]). Contact shells will provide the
analogous information in higher dimensions.
Definition. Consider contact shells ζ+ = (B+, ξ+) and ζ− = (B−, ζ−). We say that ζ+ dominates ζ− if there
exist
(1) a shell ζ̃ = (B, ξ) with an equivalence g : (B, ξ)→ (B+, ξ+) of contact shells;
(2) an embedding h : B− → B such that h∗ξ = ξ− and ξ is genuine on B \ Int h(B−).

Example 4.1. Certainly if we take concentric balls in a contact manifold, the outer ball is a solid contact shell
which dominates the smaller (also solid) contact shell. Figure 4 shows how the characteristic foliation can
change via subordination for some balls in (R3, cos rdz + r sin rdθ).

Just as we connected contact balls in the overtwisted classification in dimension three, we will want to
connect contact shells.
Definition. A (smooth) point p ∈ ∂B of a contact shell (B, ξ) is called a gluing place if Tp∂B = ξp. Given
gluing places pi ∈ (Bi, ξi) for i = 0, 1, we form the boundary connected sum (B0#B1, ξ0#ξ1) of (B0, ξ0) and
(B1, ξ1) at p0, p1 by making the shells isomorphic in neighborhoods of pi and performing the usual connected
sum.
Remark. During the proof of the overtwisted classification in dimension three, we connected balls in a contact
manifold by selecting a transverse arc from the north pole of one ball to the south pole of the other and
joining the balls via a tube around this arc. In that setting, the north and south poles were gluing places, and
our connecting of the balls corresponded to a boundary connected sum.

4I (Austin) don’t actually know whether or not anyone’s proven this one way or the other.
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(a) ∂B3 (b) ∂( 3
2
πB3) (c) ∂( 5

2
πB3)

Figure 4: Contact shells in (R3, ξot).

4.2.2 Circular model shells

In dimension three, the final step of the overtwisted classification was to construct a contact structure on
a ball with a prescribed contact germ on the boundary. This can be done done by an explicit construction,
because the germ on the boundary has been carefully controlled so that it will admit an extension. In this
section we define circular model shells, in which we will be able to state our extension problems.

The construction begins with a smooth function

K : ∆× S1 → R

where ∆ ⊂ R2n−1 is a compact, star-shaped domain. We assume thatK|∂∆×S1 > 0. For any constant C ∈ R
satisfying C + min(K) > 0, we associate toK a piecewise smooth ball

BK,C := {(x, r, t) ∈ ∆× R2|r2 ≤ K(x, t) + C} ⊂ R2n−1 × R2,

where (r, t) are treated as polar coordinates on R2. A good example to keep in mind is ∆ = [−1, 1] ⊂ R. In
this case, ∂BK,C is a (wiggled) cylinder, capped off with a pair of discs D2. The precise shape (and hence the
contact germ) of the cylinder will depend onK. But the contact germ on the discs is independent ofK.

We now have a contact germ on BK,C ; to make BK,C into a contact shell, we want to extend this germ to
an almost contact structure. This is most easily done by first introducing some auxiliary functions. We first
define v := r2 on R2, and for each (x, t) ∈ ∆× S1 we have a function

ρ(x,t) : R≥0 → R

satisfying
(a) ρ(x,t)(0) = 0, for all (x, t) ∈ ∆× S1;
(b) ρ(x,t)(v) = v − C, for (x, v, t) ∈ Op{v = K(x, t) + C};
(c) ∂vρ(x,t)(v) > 0, for (x, v, t) ∈ Op{v ≤ K(x, t) + C, x ∈ ∂∆}.

The function ρ(x,t) is meant tomeasure the rotation of the contact planes as theymove from {r = 0} ⊂ BK,C to
∂BK,C . Having chosen such a family of functions, we may define an almost contact structure ηK,ρ := (αρ, ω)
by

αρ := λst + ρdt and ω := dλst + dvdt.

Notice that
αρ(ω)n = λst(dλst)

n + nλst(dλst)
n−1dvdt+ (dλst)

ndvdt > 0,
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(a)K(z, t) = 1 (b)K(z, t) = − cos(πz)

Figure 5: The contact germ on {v = K(z, t) + C}, with ∆ = ∆cyl. In each case, the top and bottom of the
cylinder is closed with a standard (tight) disc. We have straightened out the surface on the right.

so ηK,ρ is indeed an almost contact structure. The same calculation shows that αρ(dαρ)n > 0 whenever
∂vρ > 0 — that is, the planes must rotate in order for us to have a contact structure. Conditions (b) and (c)
ensure that this occurs near ∂BK,C , and thus (BK,C , ηK,ρ) is a contact shell.
Lemma 4.2 ([BEM15, Lemma 2.1]). Up to equivalence, the contact shell (BK,C , ηK,ρ) is independent of the choice
of ρ and C.

In light of this fact, we write (BK , ηK) for the circle model associated to the contact Hamiltonian (K,∆).
IfK > 0, notice that we can let C = 0 and ρ(x,t)(v) = v for all (x, t) ∈ ∆× S1. Then ∂vρ > 0, so (BK , ηK) is a
solid contact ball. Conversely, ifK ever vanishes, then ∂vρwill vanish, causing the contact condition to fail at
some point. So the circle model associated to the contact Hamiltonian (K,∆) will be a solid contact shell if
and only ifK > 0.

4.2.3 Cylindrical domains

The overtwisted disc will be defined using a particular star-shaped domain which we now define. Let

∆cyl := D2n−2 × [−1, 1] = {Σn−1
i=1 r

2
i ≤ 1, |z| ≤ 1} ⊂ (R2n−1, ξst).

For any contact Hamiltonian (K,∆cyl), the points

P±1 := (0,±1, 0, t) ∈ (∂BK , ηK)

in the coordinates (u, z, r, t) ∈ R2n−1 × R2 are gluing places, which we call the north pole and south pole.
A boundary connected sum (BK#BK′ , ηK#ηK′) is always performed using the north pole of BK and the
south pole of BK′ .
Example 4.3. Let’s consider a contact Hamiltonian (K,∆cyl), with n = 1. Since ∆cyl = [−1, 1], we have
λst = dz, where z is the coordinate on ∆cyl. On Op{v = K(z, t) + C}we have

αρ = dz +K(z, t)dt,

according to (b). Notice that the characteristic foliation of {v = K(z, t) + C} will be horizontal whenever
K(z, t) = 0. See Figure 5. Notice that Figure 5b has a closed, horizontal orbit for each z-value whereK(z) = 0,
sinceK does not depend on t.
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4.2.4 Ordering contact Hamiltonians

We have a partial order on contact shells given by domination, and we now have a recipe for constructing
contact shells from contact Hamiltonians. Let us define a partial order on the contact Hamiltonians by writing

(K,∆) ≤ (K ′,∆′)

whenever ∆ ⊂ ∆′,

K(x, t) ≤ K ′(x, t) for x ∈ ∆, and 0 < K ′(x, t) for x ∈ ∆′ \∆.

This partial order plays nicely with our construction of circular model shells.
Lemma 4.4 ([BEM15, Lemma 4.1]). If (K,∆) ≤ (K ′,∆′), then (BK , ηK) is dominated by (BK′ , ηK′).

4.3 Overtwisted discs
When deciding how to generalize the overtwisted disc to higher dimensions, we must determine which
properties of the overtwisted disc in dimension threewewant to emulate. The goal of [BEM15] is to generalize
Eliashberg’s classification result, and thus we define overtwistedness so that it captures the key property
which made that result hold. Namely, in the proof of the classification result in dimension three, we had a
finite collection B1, . . . , Bn of balls, away from which we could make our almost contact structure contact,
but we didn’t know how to extend the contact structure over these domains. Once these balls were joined
with a neighborhood of an overtwisted disc into a single ball, the contact germ on the boundary of this ball
could be extended. This is the property we will mimic in higher dimensions. The first step of this mimicry is
the following proposition, a proof of which will be sketched in the next talk.
Proposition 4.5 ([BEM15, Proposition 3.1]). For each dimension 2n + 1, there exists a contact Hamiltonian
(Kuniv,∆cyl) such that the following holds. LetM be any (2n+ 1)-manifold, A ⊂ M a closed set, and ξ an almost
contact structure onM which is genuine on OpA ⊂M . Then there exists an almost contact structure ξ′ onM , which
is homotopic to ξ relative A through almost contact structures, and a finite collection of disjoint balls Bi ⊂ M \ A,
i = 1, . . . , L, with piecewise smooth boundaries such that ξ′ is a genuine contact structure onM \ ∪Li=1Int(Bi) and
the contact shells ξ′|Bi are equivalent to (BKuniv

, ηKuniv
) for i = 1, . . . , L.

Remark. The functionKuniv is not uniquely defined by Proposition 4.5. Any contact Hamiltonian for which
the conclusions of Proposition 4.5 hold may be calledKuniv, and Borman-Eliashberg-Murphy do not have a
simple criterion for determining whether or not a given functionK can be used, except in dimension three.
(In dimension three,K : [−1, 1]→ R need only be somewhere negative.)

This proposition performs one half of the classification proof. Namely, this result reduces the problem of
homotoping an almost contact structure to a genuine one to the problem of performing this homotopy over
the contact shell (BKuniv , ηKuniv). Notice that if (BK , ηK) is dominated by (BKuniv , ηKuniv), then the homotopy
problem can be further reduced to (BK , ηK), since the almost contact structure is genuine on the annulus
between these shells.

Next week we might define what it means for a contact Hamiltonian (K,∆cyl) to be special. The key
feature of special contact Hamiltonians is that they produce contact germs which behave much like the
overtwisted disc in dimension three. We will make this very vague statement more precise in the next talk,
but for now, let us suppose thatK : ∆cyl → R is a special contact Hamiltonian and define the contact germ
(DK , ηK). We have a constant zD ∈ (−1, 1), specified by the fact thatK is special, and define (DK , ηK) by

DK := {(x, r, t) ∈ ∂BK |z(x) ∈ [−1, zD]} ⊂ (BK , ηK).

For instance, we may take zD = 0 in Figure 5. In all cases, DK inherits the south pole of ∂BK . Notice that for
Figure 5b, (DK , ηK) contains an overtwisted disc.

We will explain these ideas more carefully in the next talk, but for now we have the following definition.
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Definition. LetKuniv be as in Proposition 4.5. An overtwisted disc (Dot, ηot) is a 2n-dimensional disc with
a germ of a contact structure such that there is a contactomorphism

(Dot, ηot) ∼= (DK , ηK)

whereK is some special contact Hamiltonian such thatK < Kuniv. A contact manifold (M2n+1, ξ) is called
overtwisted if it admits a contact embedding (Dot, ηot)→ (M, ξ) of some overtwisted disc.
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5 Classification of overtwisted structures in all dimensions
The goal of today’s talk is to outline the proof of the main theorems of [BEM15]. First, we have the existence
of contact structures on manifolds of odd dimension.
Theorem 5.1 ([BEM15, Theorem 1.1]). LetM be a (2n+ 1)-manifold, A ⊂M be a closed set, and ξ be an almost
contact structure onM . If ξ is genuine on OpA ⊂M , then ξ is homotopic relative to A to a genuine contact structure.
In particular, any almost contact structure on a closed manifold is homotopic to a genuine contact structure.

So in fact we see that every homotopy class of almost contact structures onM admits a contact structure.
The contact structures produced by Theorem 5.1 are all overtwisted, and the following result says that there
is a unique such structure in each homotopy class.
Theorem 5.2 ([BEM15, Theorem 1.2]). The inclusion j : Contot(M ;A, ξ0)→ Cont(M ;A, ξ0) induces an isomor-
phism

j∗ : π0(Contot(M ;A, ξ0))→ π0(Cont(M ;A, ξ0))

and moreover the map
j : Contot(M ;A, ξ0, φ)→ Cont(M ;A, ξ0, φ)

is a weak homotopy equivalence.

In the above statement, φ : Dot →M \A is an embedding of an overtwisted disc, and Contot(M ;A, ξ0, φ)
and Cont(M ;A, ξ0, φ) are the subspaces of Contot(M ;A, ξ0) and Cont(M ;A, ξ0), respectively, for which
φ : (Dot, ζot)→ (M, ξ) is a contact embedding. Combining the above results with Gray’s stability theorem,
we have the following corollary.
Corollary 5.3 ([BEM15, Corollary 1.3]). On any closed manifoldM any almost contact structure is homotopic to
an overtwisted contact structure which is unique up to isotopy.

Our strategy for proving Theorems 5.1 and 5.2 will mimic the strategy used in dimension three. Namely,
Gromov’s h-principle for contact structures on open manifolds reduces our existence question to the lo-
cal problem of extending a contact germ on ∂B2n+1 across B2n+1. The first step of the proof is to show
that each dimension admits a unique model on which the extension problem must be solved. This corre-
sponds to the step in dimension three where we punch out a finite collection of balls fromM , each having
almost horizontal characteristic foliations on their boundaries. Next, we connect this universal model to
a neighborhood of an overtwisted disc and show that the extension problem can be solved on this newdomain.

We will focus on today on proving Theorem 5.1, claiming that the proof of Theorem 5.2 is a parametric
version of the same argument. Each step of the proof will use the idea of conjugating contact Hamiltonians, so
we address this first. We then discuss the two key steps of the proof.

5.1 Conjugation of contact Hamiltonians and overtwisted discs
Recall that in the last talk we defined the circular model shell (BK , ηK) associated to a contact Hamiltonian
(K,∆). In this section we will claim that conjugating a contact Hamiltonian by a contactomorphism of ∆
preserves the equivalence class of (BK , ηK), and use this observation to deduce the following fact.
Proposition 5.4 ([BEM15, Proposition 3.8]). Every neighborhood of an overtwisted disc in a contact manifold
contains a foliation by overtwisted discs.

Say we have a contact Hamiltonian (K,∆) and a contactomorphism Φ: (∆, α) → (∆′, α′), where α, α′
are contact forms on ∆, ∆′. We want to define a pushforward contact Hamiltonian (Φ∗K,∆

′). Note that
contactomorphisms may change contact forms conformally, so we have a function cΦ : ∆→ R>0 such that

Φ∗α′ = cΦα.

Speaker: Nicholas Boschert
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This motivates the definition
(Φ∗K)(Φ(x), t) := cΦ(x)K(x, t).

The contact HamiltonianK : ∆× S1 → R is generated by an isotopy φtK , and the effect of this pushforward
on the isotopy is that of conjugation by Φ. So we refer to (Φ∗K,∆

′) as the result of conjugating K by Φ.
Rather importantly, this maneuver preserves equivalence classes of shells.
Lemma 5.5 ([BEM15, Lemma 4.2]). A contactomorphism Φ: ∆→ ∆′ between star-shaped domains induces an
equivalence Φ̂ : (BK , ηK)→ (BΦ∗K , ηΦ∗K) of the contact shells defined by (K,∆) and (Φ∗K,∆

′).

The second ingredient needed to prove Proposition 5.4 is a technical lemma which allows us to scale the
z-coordinate of our domain if we’re willing to scale the radial directions. The precise statement relies on
the definition of special functions. Continuing to blackbox that definition, we define a contactomorphism
Cδ : R2n−1 → R2n−1 by scaling the radial components:

Cδ(r1, . . . , rn−1, t1, . . . , tn−1, z) =

(
r1√
δ
, . . . ,

rn−1√
δ
, t1, . . . , tn−1,

z

δ

)
whenever δ ∈ Op{1}. We also define ∆δ := {|z| ≤ δ,Σr2

i ≤ δ}.
Lemma 5.6 ([BEM15, Lemma 4.3]). LetK : ∆cyl → R be a special contact Hamiltonian and defineKδ : ∆δ → R
by

Kδ := K + (δ − 1).

If δ < 1 is sufficiently close to 1, then K̃δ := (Cδ)∗Kδ : ∆cyl → R is also a special contact Hamiltonian.

Remark. The proof of Lemma 5.6 is essentially an unwinding of the definition of special contact Hamiltonians.
We are now prepared to prove Proposition 5.4.

Proof of Proposition 5.4. We begin with a fixed neighborhood of an overtwisted disc (DK , ηK), where (K,∆cyl)
is a special contact Hamiltonian. We may extend this to a neighborhood of (∂BK , ηK). Now consider
(Kδ,∆δ), as defined in Lemma 5.6, for δ ∈ [1 − ε, 1]. For sufficiently small ε > 0, we may take the family
{(∂BKδ , ηKδ)}δ∈[1−ε,1] is a foliation of our neighborhood of (∂BK , ηK). We then apply Lemma 5.6 to produce
(K̃δ,∆cyl) ≤ (Kuniv,∆univ) by conjugation, and Lemma 5.5 tells us that

(∂BKδ , ηKδ)
∼= (∂BK̃δ , ηK̃δ).

So in fact the foliation {(DKδ , ηKδ)}δ∈[1−ε,1] of our neighborhood of (DK , ηK) is a foliation by overtwisted
discs.
Remark. The key ingredient to this proof is that, while the contactHamiltoniansKδmaynot satisfyKδ < Kuniv,
each (∂BKδ , ηKδ) still contains an overtwisted disc because Kδ may be conjugated to a special contact
Hamiltonian satisfying K̃δ < Kuniv. Borman-Eliashberg-Murphy see this as a certain degree of "disorder"
among contact Hamiltonians.

5.2 Homotoping to universal holes
In this section we want to comment on the proof of the following proposition, which was stated in the
previous talk.
Proposition 5.7 ([BEM15, Proposition 3.1]). For each dimension 2n + 1, there exists a contact Hamiltonian
(Kuniv,∆cyl) such that the following holds. LetM be any (2n+ 1)-manifold, A ⊂ M a closed set, and ξ an almost
contact structure onM which is genuine on OpA ⊂M . Then there exists an almost contact structure ξ′ onM , which
is homotopic to ξ relative A through almost contact structures, and a finite collection of disjoint balls Bi ⊂ M \ A,
i = 1, . . . , L, with piecewise smooth boundaries such that ξ′ is a genuine contact structure onM \ ∪Li=1Int(Bi) and
the contact shells ξ′|Bi are equivalent to (BKuniv

, ηKuniv
) for i = 1, . . . , L.
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We will sidestep the important details by explaining the easy, 3-dimensional case and claiming that
Borman-Eliashberg-Murphy’s cleverness takes care of higher dimensions. The key fact in dimension 3 is that
circular model shells built from contact Hamiltonians on ∆cyl have a minimal element.
Lemma 5.8 ([BEM15, Lemma 4.7]). Let (K,∆) be somewhere negative, with ∆ = [−1, 1]. For any other contact
Hamiltonian (K̃,∆), there is a contactomorphism Φ: ∆→ ∆ such that

(Φ∗K,∆) ≤ (K̃,∆).

In particular, (BK , ηK) is dominated by (BK̃ , ηK̃).

Remark. Since ∆cyl = [−1, 1], the proof of this fact is a not-terribly-difficult matter of analyzing functions of a
single variable (assuming they’re time-independent). In higher dimensions the analysis can be much more
slippery, and makes identifying a minimal element less likely.

With this in hand, the 3-dimensional version of Proposition 5.7 follows. In particular, Gromov’s h-principle
for contact structures on open manifolds allows us to assume that our almost contact structure is genuine
away from some finite collection of balls. We then apply the above lemma to realize each of these balls as
contact shells dominating (BK , ηK), where (K, [−1, 1]) is somewhere negative. But the fact that these balls
dominate (BK , ηK) means that ξ can be made genuine outside some finite number of balls, each of which is
equivalent to (BK , ηK). SoKuniv = K.

In higher dimensions we are not quite so fortunate, as no minimal contact Hamiltonian up to conjugation
has been found. Instead, Borman-Eliashberg-Murphy have the following result.
Proposition 5.9 ([BEM15, Proposition 4.9]). Let (Ki,∆cyl) define contact shells (BKi , ηKi) for i = 0, 1. If there
exists ∆̃ ⊂ Int(∆) such that

• K0 ≤ K1 on Op(∆ \ Int(∆̃));

• 0 ≤ K1 on Op(∂∆̃);

• K0 ≤ 0 on Op(∆̃);

• K0|Int(∆) 6= 0;

then the contact shell (BK0 , ηK0) is dominated by (BK1 , ηK1).

Essentially, this result says that the only part of (K,∆) which is relevant to the ordering of contact shells
isK|{K≥0}. By analyzing these regions, Borman-Eliashberg-Murphy reduce to a finite collection of saucers in
each dimension, such that each of the problem areas — where our almost contact structure has not been
made contact — can be assumed to match one of these models. The contact Hamiltonian (Kuniv,∆cyl) is then
chosen to be dominated by each of these models, so that Proposition 5.7 is satisfied5

5.3 Filling of universal holes
The purpose of this section is to explain what makes special contact Hamiltonians so special, which is the
following property. Throughout, the domain ∆ is assumed to be ∆cyl.
Proposition 5.10 ([BEM15, Proposition 3.9]). LetK ≤ K0 be two contact Hamiltonians, withK special. Suppose
that (B, ξ) is a contact ball such that (DK , ηK) ⊂ (∂B, ξ), with the outward coorientation of DK coinciding with the
coorientation of ∂B. Then the contact shell (BK0

#B, ηK0
#ξ) given by performing a boundary connected sum at the

north pole of BK0
and the south pole of DK ⊂ ∂B is equivalent to a genuine contact structure.

We will provide a very sketchy argument for why this should be true. First we define, for some ε > 0,

K ′ := K − ε and ∆′ := {r ≤ 1− ε, |z| ≤ 1− ε}.
5This is incredibly sketchy; for more details see Sections 4.3, 6.3, and 8.1 of [BEM15].
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Provided ε > 0 is small enough thatK ′|∂∆′×S1 > 0, (K ′,∆′) is a contact Hamiltonian which is dominated by
(K,∆). In particular, we have an inclusion map

(BK′ , ηK′) ↪→ (BK , ηK)

which is in fact a subordination map. From this we may define a contact annulus

(A, ξA) := (BK \BK′ , ker ηK |A)

and thus a contact ball
B := {(x, r, t) ∈ A|z(x) ∈ [−1, zD]},

with ξB := ξA|B. Notice that (DK , ηK) ⊂ (∂B, ξB). We should think of (B, ξB) as a one-sided neighborhood
of (DK , ηK).

Now since (B, ξB) is a small, one-sided neighborhood of (DK , ηK) and (DK , ηK) ⊂ (∂B, ξ), we can,
by choosing ε > 0 sufficiently small in the construction of (B, ξB), take (B, ξB) to be dominated by (B, ξ).
BecauseK ≤ K0, it follows that

(BK#B, ηK#ξB) ≤ (BK0#B, ηK0#ξ).

It will thus suffice to show that (BK#B, ηK#ξB) is equivalent to a genuine contact shell. Our ability to
show this will rely on the following lemma, the proof of which makes use of Lemma 5.6 and the existence of
another type of contactomorphism which may be performed on special contact Hamiltonians. We state this
lemma somewhat loosely; for the precise statement, see [BEM15, Lemma 5.4].
Lemma 5.11 (c.f. [BEM15, Lemma 5.4]). Let (K,∆) and (K ′,∆′) be as above, and let ι : ∆ ↪→ ∆#∆ be inclusion
into the right hand factor. Then there exists a family of contact embeddings

Θσ : ∆→ Int(∆#∆), σ ∈ [0, 1]

such that

(a) Θ0 = ι;

(b) Θσ|Op{z∈[zD,1]} = ι|Op{z∈[zD,1]};

(c) Θ := Θ1 satisfies (Θ∗K
′,Θ(∆′)) < (K#K,∆#∆).

The key idea is that by applying the transverse scaling contact embeddings of Lemma 5.6 as well as twist
embeddings, which we have not described, one can stretch out ∆ ⊂ ∆#∆ so that it takes up the z-length of
the connected sum, and thus accomplish Θ∗K

′ < K#K. We will avoid the specifics of this construction, but
note that the family of contact embeddings produced by Lemma 5.11 induce

Θ̂σ : (BK′ , ηK′)→ (BK#BK , ηK#K),

where Θ̂ := Θ̂1 is a subordinationmap. In particular, ηK#K is a genuine contact form away from Int(Θ̂(BK′)).

Next, we choose an isotopy Ψσ : BK#BK → BK#BK , σ ∈ [0, 1], such that Ψ0 = Id, Ψσ|Op(∂(BK#BK)) =

Id for all σ ∈ [0, 1], and which is compatible with Θ̂σ in the following sense:

(1) Ψσ ◦ ι̂ = Θ̂σ ;
(2) Ψσ = Id on Op ι̂{z ∈ [zD, 1]};

(3) Ψ1(BK#A) = (BK#BK) \ Int(Θ̂(BK′)).
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With this isotopy in hand, we have a family

(BK#B,Ψ∗σ(ηK#ηK))

of equivalent contact shells. Notice that

(BK#B,Ψ∗0(ηK#ηK)) = (BK#B, ηK#ηB) = (BK#B, ηK#ξB)

is the contact shell of interest to us, and that

(BK#B,Ψ∗1(ηK#ηK))

is genuine because Ψ1(BK#B) avoids Int(Θ̂(BK′)), by (3). This proves Proposition 5.10.

5.4 Proof of Theorem 5.1
At last we can deduce Theorem 5.1 from Propositions 5.4, 5.7, and 5.7.

With A ⊂M and ξ as stated in Theorem 5.1, let B ⊂M \A be a ball with piecewise smooth boundary.
We may homotope ξ to be genuine on B, with (Dot, ηot) ⊂ (∂B, ξ). Note: this is not a homotopy rel ∂B, so
we can homotope any almost contact structure onB to any other. We’re just pushing our lack of control off ofB.

Now ξ is genuine on A ∪B, so our perturbations should be fixed on Op(A ∪B). We use Proposition 5.7
to produce

B1, . . . , BN ⊂M \ (A ∪B) with (Bi, ξ|Bi) ∼= (BKuniv , ηKuniv)

such that ξ can be deformed to be genuine in the complement of A ∪B ∪B1 ∪ · · · ∪BN .

Next, we choose a ball B′i ⊂ Int(B) which will be paired with Bi, for i = 1, . . . , N . Namely, we choose
these B′i disjoint such that (Di

ot, η
i
ot) ⊂ (∂B′i, ξ), and by Proposition 5.4 we can choose them such that we

have isomorphisms

(Bi#B
′
i, ξ|Bi#B′i) ∼= (Bi#B

′
i, ξ|Bi#ξ|B′i) ∼= (BKuniv

#B′i, ηKuniv
#ξ|B′i).

Finally, we have (Di
ot, η

i
ot) = (DKi , ηKi) for some special contact Hamiltonian Ki < Kuniv for each i =

1, . . . , N . Proposition 5.10 then allows us to homotope ξ|Bi#B′i to a genuine contact structure on Bi#B′i,
keeping the boundary fixed, and we have homotoped our almost contact structure rel A to a genuine contact
structure.
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6 Loose Legendrian embeddings
Our primary work so far this quarter has been to establish an h-principle for overtwisted contact structures
— indeed, we were careful to define overtwistedness so that this h-principle will hold. This week we want
to discuss an h-principle for embeddings of submanifolds into contact manifolds. In particular, we want to
discuss Legendrian embeddings; recall the following definition.

Definition. A Legendrian embedding f : Λ → (M, ξ) into a contact manifold of dimension 2n + 1 is a
topological embedding such that dim Λ = n and dfp(TpΛ) ⊂ ξf(p) for all p ∈ Λ.

In dimension three, experts have known for some time of an h-principle for a certain class of Legendrian
knots. A Legendrian knot L ⊂ (M, ξ) in a contact 3-manifold is called loose if (M \ L, ξM\L) is overtwisted.
Then we have the following result.
Theorem 6.1 ([Etn10, Theorem 1.4]). Let f0, f1 : S1 → (M3, ξ) be two loose Legendrian embeddings which are
isotopic as topological knots and have the same Thurston-Bennequin and rotation numbers. Then f0(S1) and f1(S1)
are Legendrian isotopic knots.

We haven’t defined the Thurston-Bennequin or rotation numbers of a Legendrian knot, but they record
the formal Legendrian isotopy type of a Legendrian knot.

Definition. Let Λ be a smooth n-manifold, (M, ξ) a contact (2n + 1)-manifold. A formal Legendrian em-
bedding is a pair (f, Fs), where f : Λ → M is a smooth embedding and Fs : TΛ → TM is a homotopy of
bundle maps covering f and satisfying (1) F0 = df ; (2) Fs is fiberwise injective for all s ∈ [0, 1]; (3) the image
of F1 is contained in ξ and is Lagrangian with respect to the linear conformal symplectic structure on ξ.

In this language, Theorem 6.1 says that if a pair of loose Legendrian embeddings is formally isotopic,
then in fact the embeddings are Legendrian isotopic. Our goal today is to understand loose Legendrian
embeddings in all dimensions. Namely, we will define a notion of loose Legendrian such that the following
h-principle holds.
Theorem 6.2 ([Mur12, Theorem 1.2]). Suppose n ≥ 2, and let f0, f1 : Λ→ (M2n+1, ξ) be two loose Legendrian
embeddings which are formally isotopic. Then they are Legendrian isotopic.

Notice that in dimension three, loose Legendrians may only appear in overtwisted manifolds. This is not
so in higher dimensions, where all contact manifolds contain loose Legendrian embeddings, and indeed
loose Legendrians are C0-dense in any fixed formal Legendrian isotopy class. Nonetheless, the h-principles
that exist for loose Legendrians and overtwistedness suggest that these notions should be related in some
way. We have the following result.
Theorem 6.3 ([CMP19, Theorem 1.1]). Let Λ0 be the standard Legendrian unknot inside a contact manifold (M, ξ).
Then (M, ξ) is overtwisted if and only if Λ0 is a loose Legendrian.

This is a consequential result, as checking the definition of overtwistedness given over the last two talks is
not really a tractable way to show that a contact manifold is overtwisted; this result gives a simple criterion.
Unfortunately its proof requires some background material on flexible Weinstein manifolds which we do not
yet have. Today we will focus on sketching a proof of Theorem 6.2.

The strategy of our proof sketchwill require an interpretation of formal Legendrian embeddings as sections
of the 1-jet space J1(Λ). After introducing this idea, we will explain a result of Eliashberg-Mishachev [EM09]
which allows us to approximate families of smooth, codimension 1 embeddings by wrinkled embeddings.
Applying this result to our sections of J1(Λ) allows us to replace a family of formal Legendrian embeddings
with a family of wrinkled Legendrian embeddings, which satisfy the Legendrian condition but fail to be smooth.
The final step of our proof strategy is to regularize the singularities that have appeared so far; this is the
point at which the looseness of our Legendrian embeddings is crucial. We will gloss over the details of this
statement, but loose Legendrians are those which appear as the regularization of wrinkles.

Speaker: Austin Christian
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6.1 Background
6.1.1 Front projections

Recall that for a smooth n-manifold Λ, J1(Λ) denotes the 1-jet bundle of the trivial vector bundle R× Λ→ Λ.
This space is canonically diffeomorphic to R× T ∗Λ, and carries the contact form dz − λstd. Here λstd is the
tautological 1-form on T ∗R; in local coordinates (qi, pi) on T ∗Λ, λstd = Σipidqi.

Notice that the natural projection π : J1(Λ)→ R× Λ is a Legendrian submersion; that is, π is a submersion
with the property that ker dπ ⊆ ξ at every point of J1(Λ). We call π the front projection of J1(Λ). Observe that
if Λ′ ⊆ J1(Λ) is a Legendrian submanifold, then Λ′ may be recovered from π(Λ′) using the differential data.
For instance, (R2n+1

std , dz −Σiyidxi) = J1(Rn), and a Legendrian can be recovered from its front projection by
setting yi = ∂z

∂xi
.

6.1.2 Graphical submanifolds

Given a genuine Legendrian embedding f : Λ→ (M, ξ), standard neighborhood results of contact geometry
give us a neighborhood of f(Λ) ⊆ (M, ξ) which is contactomorphic to a neighborhood of the zero section of
J1(Λ). For a more general smooth embedding f , we do not have such a neighborhood, but the following
result says that we can, after an isotopy, identify a neighborhood of a formal Legendrian embedding (f, Fs)
with an open neighborhood of some section of J1(Λ), using the family Fs to make the identification.

Proposition 6.4. Let (f, Fs) be a formal Legendrian embedding of Λ into (M, ξ). After a smooth isotopy from f to f̃ ,
we can choose an open set U ⊆M containing f̃(Λ) and a map ϕ : U → J1(Λ) which is a contactomorphism onto its
image, so that π ◦ ϕ ◦ f̃ is the identity map on Λ.

The upshot is that we are left to analyze formal Legendrian embeddings (f, Fs) as sections f : Λ→ J1(Λ)
of J1(Λ), and in this language we hope to approximate an arbitrary section by holonomic sections.

6.2 Wrinkles
The goal of this section is to define wrinkled Legendrian embeddings. These are topological embeddings which
are Legendrian wherever they are smooth, but which may have prescribed singularities. We begin by
introducing wrinkled embeddings, identifying the singularity types allowed for codimension 1 embeddings,
and then extend this discussion to Legendrian embeddings.

6.2.1 Wrinkled embeddings

All of the singularity types allowed in wrinkled embeddings are built from the zig-zag. This is a plane curve
ψ : R→ R2 which Murphy [Mur12] defines by

ψ(u) = (ψx(u), ψz(u)) =

(
u3 − u, 9

4
u5 − 5

2
u3 +

5

4
u

)
,

and which is pictured in Figure 6. Notice that the tangent planes of ψ are well-defined, in spite of the singular
points {3u2 = 1}. One way to express this is by observing that the map

Gdψ : R→ Gr2,1

extends to a smooth function on R. Here Gdψ sends a point in R to the image of dψ, which is a 1-plane in R2.
Each of the singularity types that we describe will have this property, and thus so will wrinkled embeddings.

The next singularity type we describe is the unfurled swallowtail. First, Murphy defines a family of
rescalings ψδ : R→ R2 for all δ ∈ R. When δ < 0, ψδ is a smooth curve, so we think of ψδ as “pulling ψ tight."
We use ψδ to define a hypersurface Rn → Rn+1 according to

(x1, . . . , xn−1, u) 7→ (x1, . . . , xn−1, ψxn−1
(u)).
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Figure 6: The zig-zag ψ : R→ R2.

This hypersurface has codimension 1 singular set {3u2 = xn−1}, much of which consists of cusp singularities.
The unfurled swallowtail is the codimension 2 singularity {xn−1 = u = 0}. For n = 2, the unfurled swallow-
tail can be seen in Figure 7a. Notice that in the foreground, where x1 > 0, a slice of the surface is the zig-zag,
while along xn−1 = 0, a slice is a smooth curve.

Another codimension 2 singularity is given by thewrinkle. A wrinkle has a singular set which is a sphere,
with cusp singularities on the two hemispheres of this sphere, and unfurled swallowtails along the equator.
Namely, we define w : Rn → Rn+1 by

w(x, u) = (x, ψ1−|x|2(u))

and observe that the singular set is the sphere {|x|2 + 3u2 = 1}. In case n = 2, a wrinkle is depicted in Figure
7b, where we can see that the singular set is a circle with unfurled swallowtails at each end and cusps along
the hemispheres.

In parametric families of embeddings we allow embryo singularities, which are modeled by wt(x, u) =
(x, ψt−|x|2(u)) at {x = u = t = 0}. These singularities correspond to the (dis)appearance of wrinkle
singularities in our parametric family, and are codimension 1 in time and isolated in space.

Definition. A wrinkled embedding is a codimension 1 topological embedding f : V n → Wn+1 which is
smooth away from a singular set which consists of a finite collection of codimension 1 spheres Sn−1

j ⊆ V ,
which bound discsDn

j . Near Sn−1
j , f is modeled on awrinkle. In k-parametric families, wrinkled embeddings

are allowed to have embryo singularities.

Wrinkled embeddings are important because, if we’re willing to accept the mild singularities they carry,
our holonomic approximation dreams can be fulfilled.
Theorem 6.5 ([EM09],[Mur12, Theorem 3.2]). Let V n andWn+1 be manifolds, and let ft : V →W be a parametric
family of smooth embeddings, t ∈ Dk. Let Gst : V → Grn(W ) be a smooth homotopy of maps covering ft, so that
G0
t = Gdft. Then there is a family of wrinkled embeddings F st : V →W , so that F 0

t = f0, and for all s ∈ [0, 1], F st is
C0-close to ft, and GdF st is C0-close to Gst .

29



Flexibility in Contact Topology Talk 6: Loose Legendrian embeddings

(a) An unfurled swallowtail. (b) A wrinkle.

Figure 7: Codimension 2 singularities.

6.2.2 Wrinkled Legendrian embeddings

It would be nice if we could obtain a result like Theorem 6.5 for formal Legendrian embeddings, so that all
formal Legendrians could be well-approximated by genuine Legendrian embeddings. In this subsection we
begin identifying the extent to which this is (im)possible.

Let us first consider the n = 1 case. Suppose we have a formal Legendrian embedding (f, Fs) into the
standard contact space J1(R), so that f : Λ→ J1(R). Then we have a smooth map π ◦ f : Λ1 → R2

x,z which
we will assume is a smooth embedding, and a homotopy dπ ◦ Fs : Λ1 → TR2

x,z of maps covering f . Then
Theorem 6.5 produces a family of wrinkled embeddings

F̃s : Λ→ R2
x,z

with F̃0 = f , F̃s C0-close to f , and GdF̃s C0-close to Fs. Now since each F̃s is a wrinkled embedding of
dimension 1, the only sort of singularity that can appear is a cusp, modeled on t 7→ (t2, t3) ∈ R2

x,z . Since
the cusp lifts to a Legendrian arc in J1(R) (namely, (t2, 3

2 t, t
3)), F̃s lifts to a Legendrian embedding in J1(R)

which well-approximates f . (To do this carefully, we need to make sure that our wrinkled Legendrian
embedding is nowhere vertical.)

More generally, we want to approximate sections f : Λ→ J1(Λ), for some n-manifold Λ. For n ≥ 2, the
wrinkled embeddings produced by Theorem 6.5 can have unfurled swallowtail and embryo singularities, so
we must consider whether these singularities, as maps Rn → Rn+1, lift to immersions Rn → J1(Rn). On this
front we are not so fortunate: for the unfurled swallowtail, one may compute that the lift satisfies

yi =

 0, i ≤ n− 2
5u(xn−1 − u2)/2, i = n− 1

15(u2 − 1
3xn−1)/4, i = n

.

This smooth map fails to be an immersion when xn−1 = u = 0; in particular, the differential has kernel
spanned by ∂u over this set. This motivates the definition of wrinkled Legendrian embeddings, which allows for
smooth maps whose front projections are wrinkled.
Definition. Let Λ be a smooth n-manifold and (M, ξ) a contact (2n+ 1)-manifold. A wrinkled Legendrian
embedding is a smooth map f : Λ→ (M, ξ) which is a topological embedding and satisfies the following.

• The image of df is contained in ξ everywhere, and df is full rank outside of a subset of codimension 2.
• The codimension 2 singular set is required to be diffeomorphic to a disjoint union of (n− 2)-spheres
{Sn−2

j }, called Legendrian wrinkles.

• Each Sn−2
j must be contained in a Darboux chart Uj , so that Λ ∩ Uj is diffeomorphic to Rn, and the

front projection
πj ◦ f : Λ ∩ Uj → Rn+1

of f is a wrinkled embedding, smooth outside of a compact set.
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Figure 8: A marking (in green) near a wrinkle.

Parametric families of wrinkled Legendrians are allowed to have Legendrian embryos, which are Legendrian
lifts from the front projection of embryo singularities.

The Darboux chartsUj are important in that they allow for a regularization process. Outside of the Darboux
charts, a wrinkled Legendrian is genuinely Legendrian, and within the charts there is an explicit construction,
canonical up to homotopy, which allows us to associate a formal Legendrian embedding to any wrinkled
Legendrian. Then Theorem 6.5 yields the following result formal Legendrian embeddings.
Theorem 6.6 ([Mur12, Proposition 3.4]). Let (ft, Fs,t) be a parametric family of formal Legendrian embeddings
Λ → (M, ξ), t ∈ Dk. This family is homotopic through formal Legendrian embeddings to a family f t : Λ → (M, ξ)
of wrinkled Legendrian embeddings. If (ft, Fs,t) is already a wrinkled Legendrian embedding on a closed subset
A ⊆ Λ×Dk, then we can take f t = ft on A.

Remark. It’s important to note that the formal isotopy class of a wrinkled Legendrian embedding depends on
the Darboux charts Uj which cover the wrinkles, and thus the association of a formal Legendrian embedding
to a wrinkled Legendrian may not realize all formal Legendrian isotopy types. In particular, we may not
conclude from Theorem 6.6 that every formal Legendrian embedding is isotopic to a genuine Legendrian
embedding.

6.3 Loose Legendrians
At this point, brevity demands that we be rather vague. Theorem 6.6 allows us to homotope a family of formal
Legendrian embeddings to a family of wrinkled Legendrian embeddings, and next we would like to remove
the singularities from this family. There is no canonical way to do this, but Murphy resolves singularities
using markings.

Definition. Let f : Λ → (M, ξ) be a wrinkled Legendrian. A marking for f is a compact codimension 1
embedded submanifold Φ ⊆ Λ, so that the boundary of Φ is a disjoint union of spheres which are mapped via
f to a subset of the Legendrian wrinkles. We further require that in the local models (πj ◦ f)(Λ∩Uj) ∼= w(Rn)
determined by the wrinkled structure of f , Φ is given as {u = 0, |x| > 1}, and that the interior of Φ is disjoint
from the singular set of f . For parametric families of wrinkled Legendrians, there are additional, technical
requirements on Φ which we omit.

According to Murphy, the basic idea is that zig-zags are acceptable in a front projection, but the codimen-
sion 2 singularities which occur when these zig-zags are pulled tight are not. Instead of pulling the zig-zags
tight, the zig-zags are allowed to persist throughout Λ, and "the marking Φ is just some formal data that tells
us where to put the tiny zig-zags in a consistent way." ([Mur12, Section 4.1]) See Figure 8, which depicts a
marking near a wrinkle. The wrinkle will be regularized by modifying this surface so that it has tiny zig-zags
along the marking, giving us a front projection which lifts to a smooth Legendrian.

Avoiding the details of this singularity resolution, we now claim that loose Legendrians are defined so
that they look like resolutions of some wrinkled Legendrian along some marking. Throughout the rest of this
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section, Λ0 ⊆ (R3, ξstd) will denote the Legendrian lift of the zig-zag ψ(R) ⊂ R2
x,z . Notice that if Z ⊆ T ∗Q is

the zero section of the cotangent bundle of some closed manifoldQ, then λ0×Z is a Legendrian submanifold
of (B3 ×Op(Z), ker(αstd + λstd)), since Z ⊆ OpZ is Lagrangian. Legendrians constructed in this way will
represent our model loose Legendrians.

Definition. Let Q be a closed manifold, and let Z ⊆ T ∗Q be the zero section of its cotangent bundle. With
the contact form ker(αstd +λstd), the pair (B3×Op(Z),Λ0×Z) is said to be a loose chart. We call a Legendrian
Λ ⊆ (M, ξ) loose if dim(M) ≥ 5 and there is an open set V ⊆M such that (V, V ∩ Λ) is contactomorphic to
some loose chart.

An important technical property had by loose Legendrians (essentially because they are resolutions of
wrinkles) is the following.
Proposition 6.7 ([Mur12, Proposition 4.4]). A loose chart contains two disjointly embedded loose charts, and
therefore a loose chart contains infinitely many disjointly embedded loose charts.

6.4 Proof of the h-principle
We will derive Theorem 6.2 as a consequence of a more general theorem, a proof of which we are now
prepared to sketch. For a fixed loose chart (U,Λ`) in a contact manifold (M2n+1, ξ) and a fixed, open disc
Dn in a smooth manifold Λ, we let Lform

` (Λ, U) be the space of all formal Legendrian embeddings with fixed
loose chart (U,Λ`). Namely, f : Λ→M satisfies f−1(U) = Dn, (f, Fs) is genuine on Dn, and f(Dn) = Λ`.
Theorem 6.8 ([Mur12, Theorem 1.3]). Fix k > 0 and n ≥ 2, and for t ∈ Dk let (ft, Fs,t) be a smooth family in
Lform
` (Λ, U) so that (ft, Fs,t) is a genuine Legendrian embedding for all t ∈ ∂Dk. Then the family (ft, Fs,t) is isotopic

through formal Legendrian embeddings, rel ∂Dk, to a family of genuine Legendrian embeddings.

Idea of proof. First, by applying Theorem 6.6, we may replace the family (ft, Fs,t) with a family of wrinkled
Legendrian embeddings. Essentially we are trading in our original, smooth family for a family which fails
to smooth, but is Legendrian. By assumption, (U, ft(Λ)) is a fixed loose chart, and there is a finite number
K ≥ 0 of codimension 1 submanifolds of Dk where embryo singularities appear. According to Proposition
6.7, we may choose disjoint subsets U1, . . . , UK ⊆ U such that each intersection ft(Λ) ∩ Ui is a loose chart.
The real work of the proof (which we avoid doing) is then to define a new family of Legendrian embeddings
which agrees with ft away from ∪Ki=1Ui, but which replaces each loose chart ft(Λ) ∩ Ui with a standard
loose chart which admits an explicit smoothing. One then directly verifies that this new family of genuine
Legendrian embeddings is isotopic to the original family through formal Legendrian embeddings.
Proof of Theorem 6.2. If f0 and f1 admit a formal Legendrian isotopy which is contained in some Lform

` (Λ, U),
then we can directly apply the above result to produce our Legendrian isotpoy. But if the charts witnessing
looseness of f0 and f1 are not the same, then we must produce such a formal Legendrian isotopy. First,
choose a contact isotopy ϕt between the loose charts of f0 and f1 (possible since these charts are Darboux
balls). Then we have an isotopy f̃t := ϕt ◦ ft and a Darboux ball U ⊆ (M, ξ) such that

f̃−1
0 (U) = f̃−1

1 (U) = Dn ⊆ Λ, f̃0|Dn = f̃1|Dn ,

and each of (U, f̃0(Dn)) and (U, f̃1(Dn)) is a loose chart. We can then smoothly isotope f̃t rel ∂D1 to a family
gt satisfying g−1

t (U) = Dn and gt|Dn = f̃0 for all t ∈ D1. We now have a smooth isotopy from f0 to f1 with
fixed loose chart. Finally, we realize gt as a formal Legendrian embedding (gt, Gs,t), using the fact that the
space of formal Legendrian embeddings is a Serre fibration over the space of smooth embeddings. Then we
may apply the above result to this family of formal Legendrian embeddings.
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7 The plastikstufe
The overtwisted disc described in earlier talkswas not the first generalization of the 3-dimensional overtwisted
disc to higher dimensions. An earlier generalization (with a definition which is arguably more tractable)
was given by Niederkrüger in [Nie06], called the plastikstufe. Today we want to define the plastikstufe and
point out some features which make it a good candidate for defining overtwistedness in higher dimen-
sions. The plastikstufe was not directly shown to satisfy an h-principle, but work of Murphy-Niederkrüger-
Plamenevskaya-Stipsicz [MNPS13], Casals-Murphy-Presas [CMP19], and Huang [Hua17] allows us to see
that overtwisted contact manifolds in the sense of Borman-Eliashberg-Murphy are precisely those which
admit embedded plastikstufe. We give a brief outline of this equivalence at the end of today’s talk.

7.1 Definitions
Before defining the plastikstufe, let us define the key properties of the 3-dimensional overtwisted disc which
it generalizes.

Definition. A maximally foliated submanifold N in a contact manifold (M2n+1, ξ) is a submanifold of
dimension n+ 1 on which ξ|TN defines a (possibly singular) foliation.

Definition. An elliptic singular set S ⊂ N in a maximally foliated submanifold of a contact manifold (M, ξ)
is a closed, codimension 2 (inN) submanifold which admits a neighborhood diffeomorphic toD2

x,y×S ↪→ N ,
and such that ξTL = ker(xdy − ydx) on this neighborhood.

Notice that an overtwisted disc Dot in a contact 3-manifold (M, ξ) is maximally foliated by ξ|Dot , and
that this singular foliation has a single point for its singular set. Moreover, this singular set is elliptic. These
observations motivate the following definition.

Definition. A plastikstufe PS with core S in a contact manifold (M2n+1, ξ) is an embedding

ι : D2 × S ↪→M

which is maximally foliated by ι∗ξ. The boundary ∂ PS of the plastikstufe is the only closed leaf of the
foliation, and {0} × S is an elliptic singular set.

Remark. The plastikstufe is a direct generalization of the overtwisted disc in the sense that Dot has an elliptic
singular set (a point), and Dot consists of a neighborhood of this singular set along with a single closed
Legendrian leaf for its boundary. See Figure 9.

Definition. Wewill call a contactmanifold (M2n+1, ξ)PS-overtwisted if it contains an embeddedplastikstufe
of dimension n+ 1.

7.2 Obstructing fillability
In addition to the fact that it is a direct generalization of the overtwisted disc in dimension 3, a particularly
compelling reason to view the plastikstufe as a good candidate for defining overtwistedness is that PS-
overtwisted contact manifolds are not (semipositively) symplectically fillable.

Definition. A symplectic manifold (W,ω) of dimension 2n is called semipositive if every A ∈ π2(M) with
ω(A) > 0 and c1(A) ≥ 3− n has nonnegative Chern number.

Theorem 7.1 ([Nie06, Theorem 1]). Let (M, ξ) be a closed PS-overtwisted contact manifold. ThenM does not have
any semipositive symplectic filling.

Speaker: Randy Van Why
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(a) An overtwisted disc. (b) A plastikstufe.

Figure 9: Plastikstufe in dimensions 3 and 5.

Naturally, this is a rather rigid result, in that its proof appeals to the theory of pseudoholomorphic curves
and Gromov’s compactness theorem. This being a seminar on flexibility, we will only give an impression
of the proof. Essentially the same proof which is used to establish non-fillability can be used to show that
PS-overtwisted contact manifolds satisfy the Weinstein conjecture.
Theorem 7.2 ([AH09]). Let (M, ξ) be a closed PS-overtwisted contact manifold. Then the Reeb vector field of any
contact form inducing ξ has a contractible periodic orbit.

In both cases, the proof follows the original argument in dimension 3. Let us fix a closed, compact
contact manifold (M2n+1, ξ = kerα) with an embedded plastikstufe PS ⊂ M , and suppose that (W,ω) is
a semipositive symplectic filling of (M, ξ), with compatible almost complex structure J . We will see that
no such filling may exist by analyzing a moduli space of J-holomorphic discs inW . In particular, for sets
U ⊂W and Ũ ⊂ ∂W , we letM(U, Ũ , z0) denote the moduli space of J-holomorphic discs lying in U with
boundary in Ũ , with one marked point z0 ∈ ∂D2. Then we will reach a contradiction by investigating the
boundary ofM(W,PS, z0).

A first observation is that for any non-constant u ∈M(W,PS, z0), u(∂D2) is transverse to the Legendrian
foliation on PS . It follows that u(∂D2) is disjoint from ∂ PS , and also that u(∂D2) is linked with the singular
setS. The latter observation allows us to conclude thatwhenwe compactifyM(W,PS, z0), any constant curve
will have its image in S. We have now eliminated two potential boundary components forM(W,PS, z0):
there are no non-constant discs touching ∂ PS , nor any touching the singular set S. A property of compatible
almost complex structures on symplectic manifolds with convex boundaries is that J-holomorphic curves
cannot be tangent to ∂W . Thus another source of boundary forM(W,PS, z0) is eliminated.

We are now left with two types of boundary elements which could appear in the compactification of
M(W,PS, z0): curves which have bubbles at their boundaries, and constant maps. Bubbles can indeed occur
— and Niederkrüger addresses them — but let us describe the argument if we assume that no bubbling can
happen. Then the compactification ofM(W,PS, z0) is a smooth manifold whose boundary elements are
constant maps, and these constant maps necessarily have their images in the singular set S. At this point,
Niederkrüger uses the assumption that the singular set is elliptic. With this assumption, one can take a small
neighborhood U of S inW and a well-chosen almost complex structure J so that the evaluation map evz0
gives a diffeomorphism betweenM(U, Ũ , z0) and Ũ . Here Ũ = U ∩ PS . Thus one produces a Bishop family
of J-holomorphic discs around the singular set S. Specifically, we have

ψ : Ũ →M(W,PS, z0)

satisfying evz0 ◦ ψ = idŨ , and ψ(s) will be a constant disc, for each s ∈ S.

Finally, we are able to reach our contradiction. For some metric d(·, ·) onM and some sufficiently small

34



Flexibility in Contact Topology Talk 7: The plasktikstufe

ε > 0, we consider the set
Cε := {ψ(p)|p ∈ PS, d(p, S) = ε}.

Under the evaluation map evz0 : M(W,PS, z0)→ PS , Cε will map to the generator of Hn(PS \S), by virtue
of the fact that the non-constant discs in our Bishop family link once with the singularity set S. (Recall
that dimPS = n + 1.) But at the same time, Cε is the sole boundary component of the moduli space
Mε(W,PS, z0) :=M(W,PS, z0)−∪r<εCr. So Cε represents a trivial cycle in the moduli space, contradicting
our claim that [evz0(Cε)] generates the top-degree homology of PS −S. Under the assumption that bubbles
cannot occur, this proves Theorem 7.1.

7.3 Plastikstufe and loose Legendrians
In this section, we would like to show that any PS-overtwisted contact manifold is also overtwisted in the
sense of [BEM15]. As far as we know, the only currently known proof of this fact relies on first showing
that any Legendrian embedding whose complement contains a plastikstufe is loose. Using this fact, Casals-
Murphy-Presas establish BEM-overtwistedness of a PS-overtwisted contact manifold.

PS-overtwisted BEM-overtwisted

Legendrians in comple-
ment of PS are loose

We will focus today on establishing the first arrow. In particular, we will outline a proof of the following
result.
Theorem 7.3 ([MNPS13, Theorem 1.1]). Let (M2n+1, ξ) be any contact manifold containing a small plastikstufe
PS with spherical core and trivial rotation. Then any Legendrian in (M, ξ) which is disjoint from PS is loose.

Remark. A plastikstufe PS is called small if there is an embedded open ball in (M, ξ) containing PS. We
will say that PS has spherical core if its singular set is a sphere. The notion of trivial rotation is a technical
condition which we will not precisely define. All three of these conditions were shown by Huang [Hua17] to
be unnecessary, but Huang’s proof technique differs from that of Murphy-Niederkrüger-Plamenevskaya-
Stipsicz, which we outline here.

The first step taken by Murphy-Niederkrüger-Plamenevskaya-Stipsicz towards proving Theorem 7.3 is to
prove the following folklore result, which should be seen as the low-dimensional version of Theorem 7.3.
Theorem 7.4. Let (M3, ξ) be an overtwisted contact manifold, and let L ⊂ (M, ξ) be a Legendrian knot in the
complement of an overtwisted disc Dot. Then a destabilization of L is given by the Legendrian connected sum L#∂Dot.

Remark. While the proof of Theorem 7.4 is not difficult, it uses a bit of background in convex surface theory
which we have not assumed for this seminar.

Proving Theorem 7.3 then basically amounts to carrying out Theorem 7.4 parametrically. In particular,
any embedded plastikstufe PS ⊂ (M, ξ) with singular set S admits a neighborhood UPS ⊂ (M, ξ) which is
contactomorphic to

(R3
ot × T ∗S, ker(αPS := αot + λcan)),

where αot is the standard overtwisted contact form on R3 and λcan is the canonical 1-form on T ∗S. Now for
each s ∈ S we have an overtwisted R3-slice R3

ot×{s}, and the slice Λ∩ (R3
ot×{s}) should be a 1-dimensional

arc. We then use Theorem 7.4 to identify a zig-zag in the front projection of this arc. If we are able to do this
parametrically in s, we should find a region of Λ which looks like a zig-zag crossed with S — that is, Λ will
have a loose chart.
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Now let Λ0 ⊂ Λ be the region which wewill identify as a loose chart. This regionmust be diffeomorphic to
[0, 1]×S, and since a loose chart requires a product structure, we must also be able to write UPS = R3

ot×T ∗S,
with

PS = Dot × {0-section} and Λ0 = K × {0-section},
whereK ⊂ R3

ot is a Legendrian arc. Murphy-Niederkrüger-Plamenevskaya-Stipsicz are able to identify such
a neighborhood under the conditions that S is spherical, and that PS has trivial rotation.
Lemma 7.5 ([MNPS13, Lemma 4.7]). Suppose (M2n+1, ξ) is PS-overtwisted and Λ ⊂M is a given Legendrian.
Assume that there is a small plastikstufe PS ⊂ (M, ξ) with spherical core and trivial rotation. Then there exists
an ambient contact isotopy ofM that takes a submanifold Λ0 of Λ diffeomorphic to Sn−1 × [0, 1] to a product strip
Λ1 = K × {0 section} near PS .

This lemma allows us to apply Theorem 7.4 parametrically. In particular, Lemma 7.5 says that wemay take
the Legendrian Λ to be given byK × Sn−1 in the standard neighborhood R3

ot ×D∗Sn−1 of the plastikstufe.
Theorem 7.4 is then applied for each point in Sn−1 to produce an open subset V ⊂M such that (V, V ∩ Λ) is
contactomorphic to (R3

std ×D∗Sn−1,Λ0), where Λ0 is the product of a zig-zag in R3
std and the zero section of

D∗Sn−1. Namely, V is a loose chart for Λ, meaning that Λ is loose.
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8 Flexible Weinstein structures and overtwistedness
We have recently seen h-principles for overtwistedness and loose Legendrian embeddings. In order to
connect these two notions, we will pass through Weinstein cobordisms, which give us a means of studying
symplectic structures via Morse theory. In today’s talk we will briefly recall some Weinstein geometry and
define flexible Weinstein cobordisms. Using these, we prove a geometric criterion for overtwistedness which
is stated in terms of loose Legendrian knots.

8.1 Definitions
In this section we recall the notions of Liouville and Weinstein cobordisms, and define what it means for a
Weinstein cobordism to be flexible.

Definition. A Liouville domain is a triple (W,λ,Xλ), whereW is a manifold-with-boundary, dλ is a sym-
plectic form onW , andXλ is a vector field onW which points transversely out of ∂W and satisfies ιXλdλ = λ.
We call this last condition the Liouville condition, and say that Xλ is a Liouville vector field. A Liouville
cobordism is an exact symplectic manifold-with-boundary (W,λ) admitting a vector fieldXλ which satisfies
the Liouville condition and is transverse to the boundary. We denote by ∂+W the positive boundary of
(W,λ), along which Xλ is outwardly-transverse, and by ∂−W the negative boundary, along which Xλ is
inwardly-transverse.

Remark. Notice that a Liouville domain is simply a Liouville cobordism with empty negative boundary. For
both Liouville domains and cobordisms, the requirement that Xλ is transverse to ∂W ensures that λ|∂W is a
contact form.
Example 8.1. Consider the unit disc D2n ⊂ (R2n, ωstd). The 1-form

λstd =
1

2
Σ(xidyi − yidxi)

is a primitive for the standard symplectic form ωstd, and it is straightforward to check that the radial vector
field

Xλstd
=

1

2
Σ(xi∂xi + yi∂yi)

satisfies the Liouville condition. So (D2n, λstd, Xλstd
) is a Liouville domain. By removing a smaller, concentric

disc from D2n, we obtain a Liouville cobordism.
Example 8.2. Recall that a hypersurface Σ ⊂ (M, ξ) in a contact manifold is convex if there is a vector field v,
defined on some neighborhood of Σ, such that Lvξ = ξ and v is transverse to Σ. Letting R+(Σ) ⊂ Σ denote
the portion of Σ where v is positively transverse to ξ, one can show that (R+(Σ), α|Σ) is a Liouville domain,
where ξ = kerα onM .

We would like to have some sort of handlebody decomposition for symplectic manifolds which is in some
sense compatible with Liouville structures. For this reason, we define Weinstein cobordisms to be those
Liouville cobordisms which admit a compatible Morse function.

Definition. We call a Liouville cobordism aWeinstein cobordism if the Liouville vector fieldXλ is gradient-
like for some Morse function φ.

Example 8.3. Consider the Liouville domain (D2n, λstd, Xλstd
) defined above. The Liouville vector field is

gradient-like for the Morse function
φ(x, y) =

1

4

n∑
i=1

x2
i + y2

i

(indeed,Xλstd
is precisely the gradient ofφ ifwe use the usual Riemannian structure onD2n), so (D2n, λstd, Xλstd

)
is a Weinstein cobordism.

Speaker: Joseph Breen
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By requiring that the Liouville vector field be gradient like for a Morse function, we restrict the topology
of the underlying manifold. We have the following proposition.
Proposition 8.4. Let (W,λ,Xλ) be a Weinstein cobordism of dimension 2n, and let φ be a Morse function for which
Xλ is gradient-like. Then the critical points of φ have index at most n.

Proof. The key idea here is that the stable manifold of a critical point is isotropic. Let p be a critical point
of φ, and let q be some point in its stable manifold. We claim that dλq = 0. Indeed, let ϕt : W →W denote
the time-t flow of Xλ. The Liouville condition tells us that LXλdλ = dλ, and thus ϕ∗t dλ = etdλ, for any t. In
particular, we may choose t ≥ 0 so that ϕt(q) = p, since q is in the stable manifold of p. Then ϕ∗t dλp = etdλq ,
and thus dλq = e−tϕ∗t dλp. By letting t grow without bound, we see that dλq = 0. So the stable manifold of p
is isotropic, and thus has dimension at most n.

The upshot is that a Weinstein cobordism admits a handle decomposition with handles of index at most
n. Handles of low index will generally create fewer problems for us, so we give them a special name.

Definition. Let (W,λ,Xλ) be a Weinstein cobordism of dimension 2n, and φ a Morse function for which Xλ

is gradient-like. We call a critical point p of φ subcritical if ind(p) < n.

Now the condition that Xλ be gradient-like for φ ensures that Xλ is transverse to the regular level sets of
φ, and thus these submanifolds ofW are contact manifolds. The attaching spheres of the handles provided to
us by φ live in these contact manifolds, and our proof of Proposition 8.4 allows us to see that these attaching
spheres are isotropic. In particular, if a critical point is of index n, then the associated attaching sphere will be
an isotropic submanifold of dimension n−1 in a contact manifold of dimension 2n−1 — that is a Legendrian.
Because we want flexible Weinstein cobordisms to satisfy an h-principle, we are particularly interested in
attaching spheres which obey an h-principle. This motivates the following definition.

Definition. Let (W,λ,Xλ) be a Weinstein cobordism of dimension 2n, and φ a Morse function for which Xλ

is gradient-like. We call a critical point p of ϕ flexible if the associated attaching sphere is a loose Legendrian,
and we say that (W,λ,Xλ) is flexible if every critical point of φ is either subcritical or flexible.

8.2 Flexible cobordisms preserve overtwistedness
One immediate consequence of the definition of flexible Weinstein cobordisms is that they preserve over-
twistedness, in the sense of the following proposition.
Proposition 8.5. Suppose that (W,λ,Xλ) is a flexible Weinstein cobordism, and that (∂−W, kerλ|∂−W ) is an over-
twisted contact manifold. Then (∂+W, kerλ|∂+W ) is overtwisted as well.

Proof Sketch. Let φ : W → R be a Morse function for which Xλ is gradient-like, with ∂−W and ∂+W being
regular level sets of φ. Notice that flowing alongXλ gives a contactomorphism between regular level sets of φ,
provided we do not pass through critical points. So we investigate the effect of passing through critical points,
and show that this does not sacrifice overtwistedness. Say we have a critical point contained in the level
set φ−1(c), for some c ∈ R. Then moving from φ−1(c− ε) to φ−1(c+ ε) corresponds to performing contact
surgery along the isotropic attaching sphere Λ ⊂ φ−1(c− ε). If φ−1(c− ε) contains an overtwisted disc, then
we can smoothly isotope Λ away from this disc. Because (W,λ,Xλ) is flexible, the attaching spheres of critical
points obey an h-principle which allows us to produce a contact isotopy closely approximating this smooth
isotopy. That is, we may assume that Λ is disjoint from the overtwisted disc, and when we perform surgery
along Λ, the overtwisted disc is unaffected. So if φ−1(c − ε) is overtwisted, then so is φ−1(c + ε). Because
∂−W is overtwisted, we may apply this reasoning at each critical point of Xλ to deduce that ∂+W is also
overtwisted.

Results such as this one are typical of flexible Weinstein cobordisms, and illustrate the reason they are
called flexible: by insisting that the attaching spheres of our handles are loose Legendrians, we buy ourselves
a great deal of freedom to isotope these attaching spheres in their respective regular level sets.
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8.3 Detecting overtwistedness with loose Legendrians
Finally, we state the main theorem of this talk, which connects looseness for Legendrian embeddings to
overtwistedness for contact manifolds, and ties up some loose ends left by the previous two talks.
Theorem 8.6. Let (M, ξ) be a contact manifold containing a loose Legendrian unknot. Then (M, ξ) is overtwisted.

One element in the proof of this theorem will be a notion of connected sum for Weinstein cobordisms,
which we now define. Let (W1, λ1, Xλ1) and (W2, λ2, Xλ2) beWeinstein cobordisms with non-empty negative
boundary, and let pi ∈ ∂−Wi be a point which is not in the stable manifold of any critical point of Xλi , for
i = 1, 2. Then the flowline γi of Xλi which passes through pi intersects every level set of φi precisely once,
where φi is a Morse function for which Xλi is gradient-like. Define a smooth manifold

W1#W2 := (W1 \ Op(γ1)) ∪ (W2 \ Op(γ2)),

where the gluing is performed to ensure that the Liouville forms and Morse functions map on a collar
neighborhood of ∂Op(γ1) ∪ ∂Op(γ2). Then we have a Weinstein cobordism (W1#W2, λ1#λ2, Xλ1#Xλ2),
with a Morse function φ1#φ2 regular level sets are the contact connected sums of the regular level sets of φ1

and φ2. We call this Weinstein cobordism the vertical connected sum of (W1, λ1, Xλ1
) and (W2, λ2, Xλ2

).

The proof will also make use of a type of cylindrical Weinstein cobordism over contact manifolds.

Definition. Let (M, ξ) be a contact manifold, with ξ = kerα onM . Then λ := esα gives a Liouville form on
W := [0, 1]s ×M , and we call (W,λ,Xλ) the (compact) symplectization of (M, ξ).

Remark. The Liouville vector field on the symplectization is ∂s, which is clearly gradient-like for the function
φ = s, and so the symplectization is a Weinstein cobordism.
Proposition 8.7. Let (M, ξ) be a contact manifold containing a loose Legendrian unknot. Then for any Weinstein
cobordismW , the vertical connected sumW#S(M) is flexible.

Proof Sketch. First, note that the critical set ofW#S(M) is precisely that ofW , because the compact symplec-
tization of a contact manifold has no critical points. So we need to show that every critical point ofW of
index n (where dimW = 2n) is flexible inW#S(M), though perhaps not so inW . To this end, let Λ be the
attaching sphere associated to p, and let Λ0 ⊂ (M, ξ) be a loose Legendrian. Now we may choose a loose
chart U for Λ0 which avoids Λ, since Λ0 ⊂ (M, ξ) and p comes fromW . This is possible because the gluing
region for the vertical connected sumW#S(M) avoids the stable manifolds of the critical points of p. Notice
that U witnesses the looseness of the Legendrian Λ#Λ0, and that since Λ0 is an unknot, Λ#Λ0 is smoothly
isotopic to Λ. Moreover, because Λ is loose, we may apply the h-principle for loose Legendrians to make this
a contact isotopy. So Λ is loose inW#S(M), and we conclude thatW#S(M) is flexible.
Proof Idea for Theorem 8.6. The proof relies on the following claim which we will not justify today:

Claim. There is a Weinstein cobordism (W,λ,Xλ) with negative boundary (S2n−1, ξot) and
positive boundary (S2n−1, ξstd).

This cobordism can be constructed explicitly, using open book decompositions for the contact structures ξot

and ξstd on S2n−1. According to the previous proposition, the vertical connected sumW#S(M) is flexible.
In particular, we have a flexible Weinstein cobordism from

∂−(W#S(M)) = ∂−W#M = (S2n−1, ξot)#M,

which is overtwisted, to

∂+(W#S(M)) = ∂+W#M = (S2n−1, ξstd)#M ∼= M.

By Proposition 8.5, (M, ξ) is overtwisted.
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10 Overtwistedness of (+1)-surgeries
The goal of today’s talk is to present a surgery criterion for overtwistedness of a contact manifold. In
dimension three, contact (±1)-surgeries are relatively well-understood; contact (−1)-surgery — also known
as Legendrian surgery—is known to preserve tightness, while the following proposition shows that performing
contact (+1)-surgery on a tight contact manifold can have an overtwisted outcome.
Proposition 10.1. Let L ⊂ (M ′, ξ′) be a Legendrian knot in a contact 3-manifold (M ′, ξ′), and let (M, ξ) be the
contact manifold which results from contact (+1)-surgery along S±(L). Then (M, ξ) is overtwisted.

We will provide a proof sketch for Proposition 10.1 after reviewing the definition of contact (+1)-surgery.

Recall that a Legendrian knot is stabilized by implanting a zig-zag (as in Figure 6) in the front projection
of the knot. It is natural to think of loose Legendrians in higher dimensions as those Legendrians which
have been stabilized. The stabilization procedure introduces a loose chart into a Legendrian submanifold,
creating a loose Legendrian embedding, and the loose Legendrians are precisely those Legendrians which
can be presented in this manner. A natural generalization (and strengthening) of Proposition 10.1 to higher
dimensions is thus the following.
Theorem 10.2 ([CMP19, Theorem 1.1]). Let (M, ξ) be a contact manifold of dimension at least 5. Then (M, ξ) is
overtwisted if and only if there exists a contact manifold (M ′, ξ′) and a loose Legendrian sphere Λ ⊆ (M ′, ξ′) such that
(M, ξ) is contactomorphic to the contact (+1)-surgery of (M ′, ξ′) along Λ.

Concluding overtwistedness from the criterion stated in Theorem 10.2 is the more difficult direction
of the proof, so we address this first (after some background material on contact surgery). Once we have
established this direction, we recall the notion of compatibility between open book decompositions and
contact structures before showing that all overtwisted contact manifolds in dimension at least five can be
presented as (+1)-surgeries as described above6.

10.1 Background
Before proving Theorem 10.2, we give some background on performing contact (+1)-surgery in arbitrary
dimension. A good resource for this material is [Avd12, Section 9].

10.1.1 Generalized Dehn twists

The generalized Dehn twist will be a symplectomorphism τn : T ∗Sn → T ∗Sn, generalizing the familiar Dehn
twist on the annulus. We identify T ∗Sn as

T ∗Sn = {(u, v) ∈ R2(n+1)|‖u‖ = 1, 〈u, v〉 = 0},

and the canonical Liouville form λstd = 1
2Σn+1

i=1 (uidvi − vidui) on R2(n+1) restricts to a Liouville form on
T ∗Sn. Now for some small ε� 1, define a smooth function f : [0,∞)→ R satisfying

1. f(0) = π, and f (k)|(−ε,ε) ≡ 0, for all k ≥ 1;
2. f is non-decreasing;
3. f |[2ε,∞) ≡ 2π.

Then the diffeomorphism τn : T ∗Sn → T ∗Sn is defined by

τn(u, v) = (cos(f(‖v‖)) · u+ sin(f(‖v‖)) · v

‖v‖
,−‖v‖ sin(f(‖v‖)) · u+ cos(f(‖v‖)) · v).

Notice that τ1 : T ∗S1 → T ∗S1 gives the usual Dehn twist.
Speaker: Austin Christian

6Caveat: We will show that overtwisted contact manifolds are presented as contact (+1)-surgeries, but we will not verify that the
Legendrian along which surgery is performed is loose.
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(a) f : [0,∞)→ R (b) A Dehn twist

Figure 10: The function f and a Dehn twist it produces.

Theorem 10.3 ([Sei99, Lemma 6.2]). The diffeomorphism τn preserves the symplectic form dλstd, and the isotopy
class of τn in Symp(D∗Sn, ∂D∗Sn) is independent of ε and f .

Remark. While τn preserves dλstd, the Liouville form λn is not preserved. This creates a subtlety in the
definition of contact (+1)-surgery which we will ignore.
Definition. Any symplectomorphism which is symplectically isotopic (rel. boundary) to τn is called a
generalized Dehn twist of T ∗Sn.

10.1.2 Contact (+1)-surgery

We can now describe contact (+1)-surgery on a Legendrian sphere. Any Legendrian sphere Λn ⊂ (M2n+1, ξ)
admits a neighborhood N(Λ) which is contactomorphic to the 1-jet space of Sn:

N(Λ) ∼= (J1Sn, kerαstd) = (Rz × T ∗Sn, ker(dz − λstd)).

We obtain a new contact manifold (M ′, ξ′) by first removing the portion ofN(Λ) identified with (0, 1)×D∗Sn,
and then gluing according to

(x, 0) ∼ (τ−1
n (x), 1) for x ∈ D∗Sn and (x, t) ∼ (x, t′) for x ∈ ∂D∗Sn.

Because the support of τn is some very small subset of D∗Sn, this gluing produces a smooth manifold.
Moreover, the fact that τn is a symplectomorphism will ensure that (M ′, ξ′) is contact.
Definition. We call the contact manifold (M ′, ξ′) defined above the contact (+1)-surgery of (M, ξ) along Λ.

In general, the contactomorphism type of the contact manifold resulting from this construction depends
on the Legendrian isotopy type of the parametrization Sn → Λ. However, we will only perform surgery on
loose Legendrian spheres today, and any two parametrizations of a loose Legendrian sphere are Legendrian
isotopic.

10.2 Contact (+1)-surgery is overtwisted
In this section we prove one half of Theorem 10.2, in the form of the following proposition.
Proposition 10.4. Let (M ′, ξ′) be a contact manifold of dimension at least 5, and let (M, ξ) be the contact manifold
which results from contact (+1)-surgery of (M ′, ξ′) along a loose Legendrian sphere Λ ⊆ (M ′, ξ′). Then (M, ξ) is
overtwisted.

A glib summary of the proof of Proposition 10.4 found in [CMP19] is as follows: each point in the equator
of the Legendrian sphere Λ on which we perform contact (+1)-surgery has an associated overtwisted disc in
(M, ξ), and a parametrized family of overtwisted discs is a plastikstufe.

To make this summary somewhat rigorous, let’s first prove Proposition 10.1.
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Proof sketch for Proposition 10.1. This proof can be found in [DGS04, Section 1]. Given L ⊂ (M ′, ξ′), let
L′ ⊂ (M ′, ξ′) be a transverse pushoff of L. The linking number of L and L′ is, by definition, the Thurston-
Bennequin number tb(L) of L. Now consider performing a contact (+1)-surgery along S±(L). Smoothly, this
is a (tb(S±(L)) + 1)-surgery, which is to say a tb(L)-surgery, since tb(S±(L)) = tb(L)−1. Now S±(L) and L′
cobound a Seifert surface Σ, and the framing of S±(L) determined by Σ is `k(S±(L), L′) = `k(L,L′) = tb(L).
Because this agrees with the framing coefficient of the surgery, the meridional disc arising from the surgery
will join with Σ to produce an embedded discD in (M, ξ) whose boundary is L′. The contact framing of L′ is
tb(L) and the surface framing determined byD is also tb(L). We conclude thatD is an overtwisted disc.

Next we turn to the proof of Proposition 10.4. First, we choose a Legendrian sphere Λ̃ whose spherical sta-
bilization is Λ — this can be done because Λ is loose. By identifying a neighborhood of Λ̃ with (J1Sn, kerαstd),
we may realize Λ as the spherical stabilization of the zero section in J1Sn over its equator Sn−1 ⊂ Sn. Now
for each point x in the equator, we define the circle S1

x ⊂ Sn to be the unique geodesic (i.e., meridian) passing
through x and the north and south poles. Then we have a contact submanifold

(J1S1
x, kerαstd) ⊂ (J1Sn, kerαstd)

of dimension three, and Λ ∩ J1S1
x is the stabilization of the zero section of J1S1

x.

Our next observation is that the symplectic submanifold T ∗S1
x ⊂ T ∗Sn is preserved by the generalized

Dehn twist τn : T ∗Sn → T ∗Sn, because S1
x ⊂ Sn is a geodesic, and the Dehn twist is defined using geodesic

flow. It follows that the image of J1S1
x ⊂ (M ′, ξ′) in (M, ξ) is contactomorphic to (+1)-contact surgery of

J1S1
x along Λ ∩ J1S1

x; we call this image (Mx, ξ). But since Λ ∩ J1S1
x is a stabilized Legendrian, Proposition

10.1 tells us that (Mx, ξ) is overtwisted, for every x ∈ Sn−1. The family of overtwisted discs produced by the
proof of Proposition 10.1 constitutes a plastikstufe with spherical core. Applying Theorem 7.3, we see that
(M, ξ) is overtwisted.
Remark. Technically we should also show that this platikstufe is small and has trivial rotation class, but these
are notions we side-stepped before, so we will continue to do so.

10.3 Supporting open book decompositions
We will show that overtwisted contact manifolds may be presented as contact (+1)-surgeries by investigating
their supporting open book decompositions. First, we quickly recall some open book decomposition notions.

We suppose that (W,λ) is a Liouville domain, and that ϕ : W → W is an exact symplectomorphism
supported away from ∂W . In particular, ϕ∗λ = λ+ dh for some smooth function h : W → R supported away
from ∂W . The Liouville domain (W,λ) will serve as the page of our open book decomposition, and ϕ will be
the monodromy. We let

M := ((W × [0, 1])/(x, 1) ∼ (ϕ(x), 0)) ∪∂W×S1

(
∂W ×D2

)
.

By choosingK ∈ R sufficiently large, we can ensure that

ξ := ker((λ+Kdθ + θdh) ∪ (λ|∂W +Kr2dθ))

is a contact structure onM , and we define OB(W,λ, ϕ) := (M, ξ). We say that the open book decomposition
(W,λ, ϕ) supports the contact structure ξ.

A celebrated result of Giroux says that every contact manifold admits a supporting open book.
Theorem 10.5 ([Gir02, Theorem 10]). Every contact manifold (M, ξ) is contactomorphic to some OB(W,λ, ϕ),
with (W,λ) a Weinstein domain.

Notice that ifψ : W →W is a symplectomorphism, thenOB(W,λ, ψ◦ϕ◦ψ−1) ∼= OB(W,λ, ϕ). A particular
monodromy we would like to consider is the case where ϕ = τL is a Dehn twist about a Lagrangian sphere
L ⊂ (W,λ). For dim(L) at least two, a Lagrangian sphere is necessarily an exact Lagrangian, meaning that
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D

Figure 11: An open book decomposition for (L(3, 1), ξstd), and a stabilization of this OBD. Each red circle
represents a right-handed Dehn twist. The stabilization is positive or negative depending on whether we
take the Dehn twist about the blue circle to be right- or left-handed.

λ|L = df for some f : W → R. Up to Liouville homotopy, we may rescale λ|L so that f : W → [−ε, ε], and we
then use f to lift L to a Legendrian sphere Λ ⊂ OB(W,λ, ϕ). We write

(M, ξ,Λ) = OB(W,λ, ϕ, L)

to indicate that (W,λ, ϕ) supports (M, ξ), and that Λ ⊂ (M, ξ) is a Legendrian sphere which is Legendrian
isotopic to the Legendrian lift of L ⊂ (W,λ), an exact Lagrangian sphere.

The following is a well-known relationship between Dehn twists along exact Lagrangian spheres in the
page of an open book decomposition and contact surgeries on the corresponding contact manifold.
Proposition 10.6. Suppose that (M, ξ,Λ) = OB(W,λ, ϕ, L). Then the contact manifold OB(W,λ, ϕ◦τL) is obtained
from (M, ξ) by contact (−1)-surgery along Λ, and OB(W,λ, ϕ ◦ τ−1

L ) is obtained via contact (+1)-surgery along Λ.

We will show that overtwisted contact manifolds are (+1)-surgeries by identifying a negative Dehn twist
in a supporting open book decomposition. This negative Dehn twist is found in a negative stabilization of a
given supporting open book decomposition for the contact manifold, so we now describe the stabilization
process.

An open book (W,λ, ϕ) is stabilized along a Lagrangian disc D ⊂ (W,λ) with Legendrian boundary
∂D ⊂ (∂W, kerλ) by attaching a Weinstein n-handle to (W,λ) along ∂D. The page of the new open book
decomposition is (W ∪H,λ′). This page contains a Lagrangian sphere L whose lower hemisphere is D and
whose upper hemisphere is the core of the handleH ; we call the open book decomposition (W ∪H,λ′, ϕ◦ τL)
the positive stabilization of (W,λ, ϕ), and call (W ∪H,λ′, ϕ ◦ τ−1

L ) the negative stabilization of (W,λ, ϕ) alongD.

Finally, let us define a particular contact structure ξ− onS2n+1 via an open book. Letting τn : T ∗Sn → T ∗Sn

be the generalized Dehn twist described above, we define

(S2n+1, ξ−) := OB(T ∗Sn, λstd, τ
−1
n ).

We can now describe the negative stabilization of (M, ξ) via a contact connected sum.
Theorem 10.7 (Giroux). Let (M, ξ) = OB(W,λ, ϕ) be a contact manifold, and let D ⊂ (W,λ) any Lagrangian
disc with Legendrian boundary ∂D ⊂ (∂W, kerλ). Then the positive stabilization of OB(W,λ, ϕ) along D is
contactomorphic to (M, ξ), and the negative stabilization of OB(W,λ, ϕ) along D is contactomorphic to the contact
connected sum (M#S2n+1, ξ#ξ−).

10.4 Overtwisted manifolds are (+1)-surgeries
Finally we show that if (M, ξ) is an overtwisted contact manifold of dimension at least 5, then there exists a
contact manifold (M ′, ξ′) and a loose Legendrian sphere Λ ⊆ (M ′, ξ′) such that (M, ξ) is contactomorphic to
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the contact (+1)-surgery of (M ′, ξ′) along Λ. We do this by showing that (M, ξ) is supported by a negatively
stabilized open book decomposition and then applying Proposition 10.6.

Recall that the existence h-principle for overtwisted contact structures allows us to choose a contact
structure ξ̃ onM in any homotopy class of almost contact structures. In particular, we may choose ξ̃ so that
(M#S2n+1, ξ̃#ξ−) is in the same homotopy class as (M, ξ). The uniqueness portion of the h-principle then
ensures that ξ̃#ξ− is isotopic to ξ, since these are overtwisted contact structures in the same homotopy class
of almost contact structures.

Next, Theorem 10.5 allows us to choose an open book (W,λ, ϕ) supporting (M, ξ̃), and Theorem 10.7
tells us that the negative stabilization of OB(W,λ, ϕ) is contactomorphic to (M#S2n+1, ξ̃#ξ−), and hence to
(M, ξ). So (M, ξ) is supported by a negatively stabilized open book decomposition. But this means that the
monodromy of the open book decomposition includes a negative Dehn twist and thus, by Proposition 10.6,
(M, ξ) is the result of some (+1)-contact surgery.
Remark. Proposition 10.6 essentially establishes an equivalence between the existence of a negatively stabilized
open book decomposition supporting (M, ξ) and our ability to realize (M, ξ) as the result of (+1)-surgery
along a Legendrian in some other contact manifold. By doing quite a bit more work, one can show that the
standard Legendrian unknot in (S2n+1, ξ−) is loose, and thus the Legendrian along which we do surgery to
obtain (M, ξ) is loose. The upshot is that the existence of a negatively stabilized supporting open book gives
another characterization of overtwistedness.

10.5 Geometric criteria for overtwistedness
We briefly wrap up the second half of the quarter with the following theorem characterizing overtwistedness.
Theorem 10.8 (c.f. [CMP19, Theorem 1.1]). Let (M, ξ) be a contact manifold of dimension at least 5. Then the
following are equivalent.

1. The contact manifold (M, ξ) is overtwisted.

2. The standard Legendrian unknot in (M, ξ) is a loose Legendrian submanifold.

3. There exists a small plastikstufe with spherical core and trivial rotation in (M, ξ).

4. There exists a contact manifold (M ′, ξ′) and a loose Legendrian submanifold Λ ⊂ (M ′, ξ′) such that (M, ξ) is
contactomorphic to the contact (+1)-surgery of (M ′, ξ′) along λ.

5. There exists a negatively stabilized contact open book decomposition compatible with (M, ξ).

Each of these characterizations has their own uses. The very definition of overtwistedness gives us the
desired h-principle, but does not provide a tractable means of verifying overtwistedness. The existence of a
plastikstufe allows us to prove the Weinstein conjecture for overtwisted contact manifolds and to obstruct
fillability, but does not directly give the desired h-principle. Our other three characterizations — in terms of
loose Legendrian unknots, surgery along loose Legendrians, and negatively stabilized open books — each
give us practical means of verifying the overtwistedness of a given contact manifold.
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